Understanding SMT Solvers and Their Proofs

Hans-Jorg Schurr
CS Seminar - Union College
April 24,2025

Tour Of SMT Solving

WG N Iy #5, Z
e)
. NN = ~ = Z
S “f

sJVARRY JUNE 28,

yolsl. No 1. S

A Toy Example

1. We produce 1L, 2L, and 3L bottles.

2. The price of a bottle is the volume plus
four times the wall thickness (in mm).

3. The price must be less than 45.

4. If the new machine is broken, we
cannot produce 3L bottles, and the wall
thickness must be more than 1mm.

5. The new machine is broken.

6. For all bottle sizes, the all thickness can
at most be the volume in liters.

A Toy Example

2. The price of a bottle is the volume plus * Logic: and, if then

four times the wall thickness (in mm). e Arithmetic: four times the wall
3. The price must be less than 4S. thickness
4. If the new machine is broken, we ® Universal statements: for all

cannot produce 3L bottles, and the wall
thickness must be more than 1mm.

5. The new machine is broken.

6. For all bottle sizes, the all thickness can
at most be the volume in liters.

A Toy Example

2. The price of a bottle is the volume plus * Logic: and, if then

four times the wall thickness (in mm). e Arithmetic: four times the wall
3. The price must be less than 4S. thickness
4. If the new machine is broken, we ® Universal statements: for all

cannot produce 3L bottles, and thewall ~ This is Satisfiability Modulo Theories
thickness must be more than 1mm.

5. The new machine is broken.

6. For all bottle sizes, the all thickness can
at most be the volume in liters.

SMT Solving As A Diagram

SAT Solver
Theory Solver

Instantiation Procedure]

SMT Solving As A Diagram

SAT Solver
Theory Solver

Instantiation Procedure]

An Example: Problem Specification

1. We produce 1L, 2L, and 3L bottles.

2. The price of a bottle is the volume plus
four times the wall thickness (in mm).
3. The price must be less than 4S.

4. If the new machine is broken, we
cannot produce 3L bottles, and the wall
thickness must be more than 1mm.

5. The new machine is broken.

6. For all bottle sizes, the wall thickness in
millimetre can at most be the volume in
liters.

An Example: Problem Specification

1. We produce 1L, 2L, and 3L bottles. lLLv=1Vv=2Vuv=3
2. The price of a bottle is the volume plus 2. p=v+2t
four times the wall thickness (in mm).
3. The price must be less than 4S. 3.p<4
4. If the new machine is broken, we 4. b= (v£3NE>1)

cannot produce 3L bottles, and the wall
thickness must be more than 1mm.

5. The new machine is broken. 5.b

6. For all bottle sizes, the wall thickness in 6. Vz.ov=z—t<z
millimetre can at most be the volume in
liters.

SMT Solving As A Diagram

SAT Solver
Theory Solver

Instantiation Procedure]

An Example: Preprocessing

lL.v=1Vuv=2Vv=3
2.0+2t<p

3.p=4

4. b— (—v=3At>1)
5.b

6. Vz.ov=2z—t<z

An Example: Preprocessing

A oW N =

o

.v=1Vuv=2Vv=3
.42t <p

.p=4

b= (—v=3At>1)

b

6. Vz.ov=2z—t<z

>

o

v=1Vuv=2Vv=3
v+2t <4

-bV-v=23
-bV1<t
b

6. Vz.-w =2V (2 <t)

SMT Solving As A Diagram

SAT Solver
Theory Solver

Instantiation Procedure]

An Example: The Ground Solver

* py=1Vv=2Vv=3
° v4+2t <4

e ~pV-—-w=3

e hvVI1<t

°)

* Vz.w=2zV-(z<t)

An Example: The Ground Solver

SAT Problem
® pyVpyVps
e y=1Vv=2Vov=3 ¢ Py
o 42t <4 ® TbV
© ~bV-v=3 oV
o bvl<t °b
°)

\/
\4

T~
T+
~—

An Example: The Ground Solver

SAT Problem

® p; Vpy Vs
e y=1Vov=2Vov=3 ¢ Py
° u 42 <4 ® ~bV-ps
e -hpV—-w=23 ® —bVps

L))
e -HhVvl<t
) Theory Literals
L Fiime= W o

.pl::’U:l’p2::’U:2’p3::’U:3
® pyi=v+2t<4
.p5::t>1

SMT Solving As A Diagram

SAT Solver
Theory Solver

Instantiation Procedure]

10

An Example: The SAT Solver and the Theory Solver

SAT Problem
® p1VpyVps
® Py
® bV ps
® —bVps
°)

Theory Literals
*ppi=v=Lpyi=v=2pg:=v=3
° p,i=v+2t<4
® psi=t>1

11

An Example: The SAT Solver and the Theory Solver

SAT Solver
SAT Problem

® p1VpyVps
® Py

® bV ps

® —bVps

°)

Theory Literals
*ppi=v=Lpyi=v=2pg:=v=3
° p,i=v+2t<4
® psi=t>1

I piCk b’ P25 Pys and Ps 2

11

An Example: The SAT Solver and the Theory Solver

SAT Solver
SAT Problem I pick b, po, py, and p; &2
®* pVpyVp
. pl 2 3 Linear Arithmetic Solver
4
o« —bV —p, 1. lgetv =2,v+2t <4,andt > 1
°)

Theory Literals
*ppi=v=Lpyi=v=2pg:=v=3
° p,i=v+2t<4
® psi=t>1

11

An Example: The SAT Solver and the Theory Solver

SAT Solver

SAT Problem I pick b, py, py, and py &

®* P VpyVp

. pl 2 3 Linear Arithmetic Solver

! 1. lgetv=2,v+2t <4,andt > 1
o bV 2. Doesn’t work:
: Ps =2V (02 <4)Vt>1E

[}

Theory Literals

° ::U:Lp2 ::U:2,p3 =v =3
° p,i=v+2t<4
.p5 :t>]_

11

An Example: The SAT Solver and the Theory Solver

SAT Problem
® p1VpyVps
® Py
® bV ps
® —bVps
°)

Theory Literals
° ::U:Lp2 ::U:2,p3 =v =3

° p,i=v+2t<4
.p5::t>1

SAT Solver
| pick b, p, py, and p; &
Linear Arithmetic Solver
1. lgetv=2,v+2t <4,andt > 1

2. Doesn’t work:
v =2V-(v+2t<4)V-t>1E

SAT Solver
I have to pick b, p;, py, and ps

11

An Example: The SAT Solver and the Theory Solver

SAT Problem
® p1VpyVps
® Py
® bV ps
® —bVps
°)

Theory Literals
° ::U:Lp2 ::U:2,p3 =v =3

° p,i=v+2t<4
.p5::t>1

SAT Solver
| pick b, p, py, and p; &
Linear Arithmetic Solver
1. lgetv=2,v+2t <4,andt > 1

2. Doesn’t work:
v =2V-(v+2t<4)V-t>1E

SAT Solver
I have to pick b, p;, py, and ps

Linear Arithmetic Solver
1. lgetv=1,v+2t <4,andt > 1

11

An Example: The SAT Solver and the Theory Solver

SAT Problem
® p1VpyVps
® Py
® bV ps
® —bVps
°)

Theory Literals
° ::U:Lp2 ::U:2,p3 =v =3

° p,i=v+2t<4
.p5::t>1

SAT Solver
| pick b, p, py, and p; &
Linear Arithmetic Solver
1. lgetv=2,v+2t <4,andt > 1

2. Doesn’t work:
v =2V-(v+2t<4)V-t>1E

SAT Solver
I have to pick b, p;, py, and ps

Linear Arithmetic Solver
1. lgetv=1,v+2t <4,andt > 1
2. That works! €7

11

SMT Solving As A Diagram

SAT Solver
Theory Solver

Instantiation Procedure]

12

An Example: Quantifier Instantiation

SAT Problem
® p1VpeVps
® Dy
® bV —pg
® bV ps
)

Theory Literals

.pl::’U:l’pz::U:2’p3::v:3
® pyi=v+2t<4
.p5::t>1

Instantiation Procedure
® |lhaveVz. v =2V z<t

13

An Example: Quantifier Instantiation

SAT Problem
® p1VpeVps
® Py
® bV —pg
® bV ps
)

Theory Literals

.pl::’U:l’p2::U:2’p3::U:3
® pyi=v+2t<4
.p5::t>1

Instantiation Procedure
® |lhaveVz. v =2V z<t
* What happensif pick z < 1? @

13

An Example: Quantifier Instantiation

SAT Problem

L] vV V

Pr¥P2 ¥ Ps Instantiation Procedure
[]

p4b\/ ® |lhaveVz. v =2V z<t
o — —/

by b3 * What happensif pick z < 1? @

o —
- Ps e Thats—v =1V -t > 1

Theory Literals

.pl::’U:l’p2::Qj:2’p3::U:3
® pyi=v+2t<4
.p5::t>1

13

An Example: Quantifier Instantiation

SAT Problem
® pVpyVp
R ! 2 3 Instantiation Procedure
b
4 ® |lhaveVz. v =2V z<t
. by * What happensif pick z < 1? @
Ps e Thats—v =1V -t > 1
°)
Theory Literals SAT Solver
[] = = = = = =
pl v ’p2 v ’p3 v ° Oh no ;::

® pyi=v+2t<4
.p5::t>1

13

SMT Solving As A Diagram

__ e
roblem
eren (o]

Preprocessof mm—m—r| | — —/———— J)| T _____

Instantiation Procedure] --------

Example Application: aws Zelkova

Zelk:ia—%

Question

Policy

Mathematical
Constraints
(SMT)

Yes

OR

No

15

Using SMT-LIB

(set-logic LRA)

(declare-const v Real) (declare-const t Real)
(declare-const b Bool)

(assert (or (= v 1) (= v 2) (=v 3)))

(assert (< (+ v (x 2 t)) p))

(assert (= p 4))

(assert (=> b (and (not (= v 3)) (>t 1))))
(assert b)

(assert (forall ((z Real)) (=> (= v z) (<=t 2))))
(check-sat)

] Most SMT solvers support SMT-LIB

¥ Yearly competition (SMT-COMP)
= Large benchmark library

t= Theories: arithmetic, arrays, data-types, bit-vectors, strings, ...

16

Some Solvers You Can Try (a Biased List)

WeriT

e Small solver

e Excellent proofs, good quantifier
support
* www.verit-solver.org

CVGCS

e Industrial strength
e Supports everything
e cvch.github.io

Bitwuzla

® Specialized on bit-vectors, and
floating-points

® Very fast

e bitwuzla.github.io

23

® \Very established
® Also supports everything

e https:
//github.com/Z3Prover/z3

17

www.verit-solver.org
cvc5.github.io
bitwuzla.github.io
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3

Example Application: aws Zelkova

Zelk:ia—%

Question

Policy

Mathematical
Constraints
(SMT)

Yes

OR

No

19

aws Zelkova

Zelkova Style SMT Constraints

Policy = Query is valid
—(Policy = Query) is unsatisfiable
Policy A —=Query is unsatisfiable

20

aws Zelkova

Zelkova Style SMT Constraints

Policy = Query is valid
—(Policy = Query) is unsatisfiable
Policy A —=Query is unsatisfiable

® Query is against policy: satisfiable!
® Evidence: countermodel
® Easy to check by evaluation.

® Query follows policy: unsatisfiable!

® Evidence: refutation proof
® Hard!

20

SMT Proofs: Basic Structure

t2

ty
tl t4
—tl /\t4 andl

ity 1 Aty

(assume a0 t1)

(assume al t2)

(step s1 t3
:premises

(step s20 t&
:premises

(step s21 (and t1
:premises

(a1) :rule rulel)
(s19) :rule rule2)
t4)

(a® s20) :rule andI)

21

SMT Proofs: Alternative View

Proofs as Terms
® Proofs are terms of a dedicated Proof type.

® The Proof type depends on the formula it proves.

Example
(andI
((assume t1)
(rule2 (...(rulel ((assume t2)))...))
)

) : Proof (and t1 t4)

22

Eunoia: /cvcs,’s DSL to Describe Proof Rules

and introduction

(declare-rule andI ((F1 Bool) (F2 Bool))
:premises (F1 F2)
:conclusion (and F1 F2)

23

Eunoia: /cvcs,’s DSL to Describe Proof Rules

and introduction

(declare-rule andI ((F1 Bool) (F2 Bool))
:premises (F1 F2)
:conclusion (and F1 F2)

Resolution

(program $resolve ((C1 Bool) (C2 Bool) (pol Bool) (L Bool))
(Bool Bool Bool Bool) Bool
(($resolve C1 C2 pol L)
(eo::list_concat or ($nary_remove or false (eo::ite pol L (not L)) C1)
($nary_remove or false (eo::ite pol (not L) L) C2))
)

)

(declare-rule resolution ((C1 Bool) (C2 Bool) (pol Bool) (L Bool))
:premises (C1 C2) :args (pol L) :conclusion ($resolve C1 C2 pol L)

)

23

System Y: A Mechanized Formal Core Language For Eunoia

® Ongoing work!
® How can we know Eunoia is sound?

4

4

24

System Y: A Mechanized Formal Core Language For Eunoia

® Ongoing work!
® How can we know Eunoia is sound?

® We model it in another programming language (Agda).

/4

-a

N

24

System Y: A Mechanized Formal Core Language For Eunoia

Ongoing work!
® How can we know Eunoia is sound?

We model it in another programming language (Agda).

Symbols are associated with parameter lists.

7 /4

24

System Y: A Mechanized Formal Core Language For Eunoia

Ongoing work!

® How can we know Eunoia is sound?

We model it in another programming language (Agda).

Symbols are associated with parameter lists.
Binding is handled locally via Meta-vectors.

7 /4

24

System Y: A Mechanized Formal Core Language For Eunoia

Ongoing work!

® How can we know Eunoia is sound?

We model it in another programming language (Agda).

Symbols are associated with parameter lists.
Binding is handled locally via Meta-vectors.
® e.g., bit-vectors that track bound variables.

7 /4

24

System Y: A Mechanized Formal Core Language For Eunoia

Ongoing work!

® How can we know Eunoia is sound?

We model it in another programming language (Agda).

Symbols are associated with parameter lists.

Binding is handled locally via Meta-vectors.
® e.g., bit-vectors that track bound variables.

Divergence is handled via guards

<4

N\

24

System Y: A Mechanized Formal Core Language For Eunoia

Ongoing work!

® How can we know Eunoia is sound?

We model it in another programming language (Agda).

Symbols are associated with parameter lists.

Binding is handled locally via Meta-vectors.
® e.g., bit-vectors that track bound variables.

Divergence is handled via guards

® you must provide evidence a program evaluates in finitely
many steps.

<4

N\

24

Thank You!

‘cves meriT IOWA

Eunoia: /cvcs,’s DSL to Describe Proof Rules

This language is odd!

26

Eunoia: /cvcs,’s DSL to Describe Proof Rules

This language is odd!
® No dedicated term datatype.

26

Eunoia: /cvcs,’s DSL to Describe Proof Rules

This language is odd!
® No dedicated term datatype.
® Dependently typed, but there is no II-binder.

26

Eunoia: /cvcs,’s DSL to Describe Proof Rules

This language is odd!
® No dedicated term datatype.
® Dependently typed, but there is no II-binder.

® Variables are scoped over types and case branches.

26

Eunoia: /cvcs”’s DSL to Describe Proof Rules

This language is odd!
® No dedicated term datatype.
® Dependently typed, but there is no II-binder.

® Variables are scoped over types and case branches.

® Branch variables have the same general type,

26

Eunoia: /cvcs’s DSL to Describe Proof Rules

This language is odd!
® No dedicated term datatype.

® Dependently typed, but there is no II-binder.
® Variables are scoped over types and case branches.
® Branch variables have the same general type,

® but type variables instantiation is branch independent.

26

Eunoia: /cvcs’s DSL to Describe Proof Rules

This language is odd!
® No dedicated term datatype.

® Dependently typed, but there is no II-binder.
® Variables are scoped over types and case branches.
® Branch variables have the same general type,

® but type variables instantiation is branch independent.

® Programs can diverge.

26

Eunoia: /cvcs’s DSL to Describe Proof Rules

This language is odd!
® No dedicated term datatype.

® Dependently typed, but there is no II-binder.
® Variables are scoped over types and case branches.
® Branch variables have the same general type,

® but type variables instantiation is branch independent.

® Programs can diverge.
e [fthere is no matching branch, they get stuck!

26

	Tour Of SMT Solving
	SMT Proofs

