Understanding SMT Solvers and Their Proofs

Hans-Jörg Schurr CS Seminar – Union College April 24, 2025

Part I

Tour Of SMT Solving PRICE ONE PENNY VOLI. No 1. SATVRDAY JUNE 28, 1890

A Toy Example

- 1. We produce 1L, 2L, and 3L bottles.
- 2. The price of a bottle is the volume plus four times the wall thickness (in mm).
- 3. The price must be less than 4\$.
- 4. If the new machine is broken, we cannot produce 3L bottles, and the wall thickness must be more than 1mm.
- 5. The new machine is broken.
- 6. For all bottle sizes, the all thickness can at most be the volume in liters.

A Toy Example

- 1. We produce 1L, 2L, and 3L bottles.
- 2. The price of a bottle is the volume plus four times the wall thickness (in mm).
- 3. The price must be less than 4\$.
- 4. If the new machine is broken, we cannot produce 3L bottles, and the wall thickness must be more than 1mm.
- 5. The new machine is broken.
- 6. For all bottle sizes, the all thickness can at most be the volume in liters.

To solve this, we must understand:

- Logic: and, if then
- Arithmetic: four times the wall thickness
- Universal statements: for all

A Toy Example

- 1. We produce 1L, 2L, and 3L bottles.
- The price of a bottle is the volume plus four times the wall thickness (in mm).
- 3. The price must be less than 4\$.
- 4. If the new machine is broken, we cannot produce 3L bottles, and the wall thickness must be more than 1mm.
- 5. The new machine is broken.
- 6. For all bottle sizes, the all thickness can at most be the volume in liters.

To solve this, we must understand:

- Logic: and, if then
- Arithmetic: four times the wall thickness
- Universal statements: for all

This is **Satisfiability Modulo Theories**

An Example: Problem Specification

- 1. We produce 1L, 2L, and 3L bottles.
- 2. The price of a bottle is the volume plus four times the wall thickness (in mm).
- 3. The price must be less than 4\$.
- 4. If the new machine is broken, we cannot produce 3L bottles, and the wall thickness must be more than 1mm.
- 5. The new machine is broken.
- For all bottle sizes, the wall thickness in millimetre can at most be the volume in liters.

An Example: Problem Specification

- 1. We produce 1L, 2L, and 3L bottles.
- 2. The price of a bottle is the volume plus four times the wall thickness (in mm).
- 3. The price must be less than 4\$.
- 4. If the new machine is broken, we cannot produce 3L bottles, and the wall thickness must be more than 1mm.
- 5. The new machine is broken.
- For all bottle sizes, the wall thickness in millimetre can at most be the volume in liters.

1.
$$v = 1 \lor v = 2 \lor v = 3$$

2.
$$p = v + 2t$$

3.
$$p < 4$$

$$4. \ b \rightarrow (v \neq 3 \land t > 1)$$

6.
$$\forall z. v = z \rightarrow t \leq z$$

An Example: Preprocessing

1.
$$v = 1 \lor v = 2 \lor v = 3$$

2.
$$v + 2t < p$$

3.
$$p = 4$$

4.
$$b \to (\neg v = 3 \land t > 1)$$

6.
$$\forall z. v = z \rightarrow t \leq z$$

An Example: Preprocessing

1.
$$v = 1 \lor v = 2 \lor v = 3$$

2.
$$v + 2t < p$$

3.
$$p = 4$$

4.
$$b \to (\neg v = 3 \land t > 1)$$

6.
$$\forall z. v = z \rightarrow t \leq z$$

1.
$$v = 1 \lor v = 2 \lor v = 3$$

2.
$$v + 2t < 4$$

4.
$$\neg b \lor \neg v = 3$$

 $\neg b \lor 1 < t$

$$\textbf{6.} \ \forall z. \, \neg v = z \vee \neg (z < t)$$

An Example: The Ground Solver

•
$$v = 1 \lor v = 2 \lor v = 3$$

•
$$v + 2t < 4$$

•
$$\neg b \lor \neg v = 3$$

•
$$\neg b \lor 1 < t$$

- b
- $\bullet \ \, \forall z.\, \neg v = z \vee \neg (z < t)$

An Example: The Ground Solver

•
$$v = 1 \lor v = 2 \lor v = 3$$

- v + 2t < 4
- $\neg b \lor \neg v = 3$
- $\neg b \lor 1 < t$
- b
- $\bullet \ \, \forall z. \, \neg v = z \vee \neg (z < t)$

SAT Problem

- $\bullet \ p_1 \vee p_2 \vee p_3$
- p₄
- $\bullet \ \, \neg b \vee \neg p_3$
- $\neg b \lor p_5$
- b

An Example: The Ground Solver

•
$$v = 1 \lor v = 2 \lor v = 3$$

•
$$v + 2t < 4$$

•
$$\neg b \lor \neg v = 3$$

•
$$\neg b \lor 1 < t$$

- b
- $\bullet \ \forall z. \neg v = z \lor \neg (z < t)$

SAT Problem

- $\bullet \ p_1 \vee p_2 \vee p_3$
- p₄
- $\neg b \lor \neg p_3$
- $\neg b \lor p_5$
- b

Theory Literals

- $\bullet \ p_1:=v=1, p_2:=v=2, p_3:=v=3$
- $p_4 := v + 2t < 4$
- $p_5 := t > 1$

SAT Problem

- $p_1 \vee p_2 \vee p_3$
- p₄
- $\neg b \lor \neg p_3$
- $\bullet \ \neg b \vee p_5$
- b

Theory Literals

- $p_1 := v = 1, p_2 := v = 2, p_3 := v = 3$
- $p_4 := v + 2t < 4$
- $p_5 := t > 1$

SAT Problem

- $\bullet \ p_1 \vee p_2 \vee p_3$
- p₄
- \bullet $\neg b \lor \neg p_3$
- $\bullet \ \neg b \vee p_5$
- b

Theory Literals

- $p_1 := v = 1, p_2 := v = 2, p_3 := v = 3$
- $p_4 := v + 2t < 4$
- $p_5 := t > 1$

SAT Solver

I pick b, p_2 , p_4 , and p_5 $\cite{condition}$

SAT Problem

- $\bullet \ p_1 \vee p_2 \vee p_3$
- p₄
- $\neg b \vee \neg p_3$
- $\bullet \ \neg b \vee p_5$
- b

Theory Literals

- $p_1 := v = 1, p_2 := v = 2, p_3 := v = 3$
- $p_4 := v + 2t < 4$
- $p_5 := t > 1$

SAT Solver

I pick b, p_2 , p_4 , and p_5 $\ensuremath{ rac{ }{ rac{ }{ rac{ }{ }} } }$

Linear Arithmetic Solver

1. I get v = 2, v + 2t < 4, and t > 1

SAT Problem

- $\bullet \ p_1 \vee p_2 \vee p_3$
- ullet p_4
- \bullet $\neg b \lor \neg p_3$
- $\bullet \ \neg b \vee p_5$
- b

Theory Literals

- $p_1 := v = 1, p_2 := v = 2, p_3 := v = 3$
- $p_4 := v + 2t < 4$
- $p_5 := t > 1$

SAT Solver

Linear Arithmetic Solver

- 1. I get v = 2, v + 2t < 4, and t > 1
- 2. Doesn't work:

$$\neg v = 2 \lor \neg (v + 2t < 4) \lor \neg t > 1$$

SAT Problem

- $\bullet \ p_1 \vee p_2 \vee p_3$
- ullet p_4
- $\neg b \lor \neg p_3$
- $\neg b \lor p_5$
- b

Theory Literals

- $p_1 := v = 1, p_2 := v = 2, p_3 := v = 3$
- $p_4 := v + 2t < 4$
- $p_5 := t > 1$

SAT Solver

Linear Arithmetic Solver

- 1. I get v = 2, v + 2t < 4, and t > 1
- Doesn't work:

$$\neg v = 2 \lor \neg (v + 2t < 4) \lor \neg t > 1$$

I have to pick b, p_1 , p_4 , and $p_5 \stackrel{\sf d}{=}$

SAT Problem

- $\bullet \ p_1 \vee p_2 \vee p_3$
- ullet p_4
- $\neg b \lor \neg p_3$
- $\neg b \lor p_5$
- b

Theory Literals

- $p_1 := v = 1, p_2 := v = 2, p_3 := v = 3$
- $p_4 := v + 2t < 4$
- $p_5 := t > 1$

SAT Solver

Linear Arithmetic Solver

- 1. I get v = 2, v + 2t < 4, and t > 1
- 2. Doesn't work:

$$\neg v = 2 \lor \neg (v + 2t < 4) \lor \neg t > 1$$

SAT Solver

I have to pick b, p_1 , p_4 , and $p_5 \stackrel{\it d}{=}$

Linear Arithmetic Solver

1. I get v = 1, v + 2t < 4, and t > 1

SAT Problem

- $\bullet \ p_1 \vee p_2 \vee p_3$
- p₄
- $\neg b \lor \neg p_3$
- $\bullet \ \neg b \vee p_5$
- b

Theory Literals

- $p_1 := v = 1, p_2 := v = 2, p_3 := v = 3$
- $p_4 := v + 2t < 4$
- $p_5 := t > 1$

SAT Solver

Linear Arithmetic Solver

- 1. I get v = 2, v + 2t < 4, and t > 1
- 2. Doesn't work:

$$\neg v = 2 \lor \neg (v + 2t < 4) \lor \neg t > 1$$

SAT Solver

I have to pick b , p_1 , p_4 , and $p_5 \stackrel{\it d}{=}$

Linear Arithmetic Solver

- 1. I get v = 1, v + 2t < 4, and t > 1
- 2. That works! 🎉

SAT Problem

- $\bullet \ p_1 \vee p_2 \vee p_3$
- ullet p_4
- $\neg b \lor \neg p_3$
- $\neg b \lor p_5$
- b

Theory Literals

- $\bullet \ p_1:=v=1, p_2:=v=2, p_3:=v=3$
- $p_4 := v + 2t < 4$
- $p_5 := t > 1$

Instantiation Procedure

 $\bullet \ \ \mathsf{I} \ \mathsf{have} \ \forall z. \, \neg v = z \lor \neg z < t$

SAT Problem

- $p_1 \vee p_2 \vee p_3$
- ullet p_4
- $\neg b \lor \neg p_3$
- $\neg b \lor p_5$
- b

Theory Literals

- $\bullet \ p_1:=v=1, p_2:=v=2, p_3:=v=3$
- $p_4 := v + 2t < 4$
- $p_5 := t > 1$

Instantiation Procedure

- I have $\forall z. \neg v = z \lor \neg z < t$
- What happens if I pick $z \leftarrow 1$? $\overline{\mathbf{W}}$

SAT Problem

- $\bullet \ p_1 \vee p_2 \vee p_3$
- p₄
- $\neg b \lor \neg p_3$
- $\neg b \lor p_5$
- b

Theory Literals

- $\bullet \ p_1:=v=1, p_2:=v=2, p_3:=v=3$
- $p_4 := v + 2t < 4$
- $p_5 := t > 1$

Instantiation Procedure

- I have $\forall z. \neg v = z \lor \neg z < t$
- What happens if I pick $z \leftarrow 1$? $\mathbf{\overline{w}}$
- That's $\neg v = 1 \lor \neg t > 1$

SAT Problem

- $p_1 \vee p_2 \vee p_3$
- p₄
- $\neg b \lor \neg p_3$
- $\neg b \lor p_5$
- b

Theory Literals

- $\bullet \ p_1:=v=1, p_2:=v=2, p_3:=v=3$
- $p_4 := v + 2t < 4$
- $p_5 := t > 1$

Instantiation Procedure

- I have $\forall z. \neg v = z \lor \neg z < t$
- What happens if I pick $z \leftarrow 1$?
- That's $\neg v = 1 \lor \neg t > 1$

SAT Solver

- That's $\neg p_1 \lor \neg p_5$
- Oh no (2)

Example Application: aws Zelkova

Using SMT-LIB

```
(set-logic LRA)
(declare-const v Real) (declare-const t Real)
(declare-const b Bool)
(assert (or (= v 1) (= v 2) (= v 3)))
(assert (< (+ v (* 2 t)) p))
(assert (= p 4))
(assert (=> b (and (not (= v 3)) (> t 1))))
(assert b)
(assert (forall ((z Real)) (=> (= v z) (<= t z))))
(check-sat)</pre>
```

- Most SMT solvers support SMT-LIB
- Theories: arithmetic, arrays, data-types, bit-vectors, strings, ...
- Yearly competition (SMT-COMP)
- 📚 Large benchmark library

Some Solvers You Can Try (a Biased List)

MeriT

- Small solver
- Excellent proofs, good quantifier support
- www.verit-solver.org

CVC5

- Industrial strength
- Supports everything
- cvc5.github.io

- Specialized on bit-vectors, and floating-points
- Very fast
- bitwuzla.github.io

- Very established
- Also supports everything
- https:
 //github.com/Z3Prover/z3

Example Application: aws Zelkova

Zelkova Style SMT Constraints

 $Policy \Rightarrow Query$ is valid $\neg(Policy \Rightarrow Query)$ is unsatisfiable $Policy \land \neg Query$ is unsatisfiable

Zelkova Style SMT Constraints

$$Policy \Rightarrow Query$$
 is valid $\neg(Policy \Rightarrow Query)$ is unsatisfiable $Policy \land \neg Query$ is unsatisfiable

- Query is against policy: satisfiable!
 - Evidence: countermodel
 - Easy to check by evaluation.
- Query follows policy: unsatisfiable!
 - Evidence: refutation proof
 - Hard!

SMT Proofs: Basic Structure

```
\begin{array}{c} \frac{t_2}{t_3} \\ \vdots \\ \frac{t_1 \quad t_4}{t_1 \wedge t_4} \\ \text{andI} \\ t_1, t_2 \vdash t_1 \wedge t_4 \\ \end{array} \begin{array}{c} \text{(assume a0 t1)} \\ \text{(assume a1 t2)} \\ \text{(step s1 t3)} \\ \vdots \\ \text{(step s20 t4)} \\ \text{:premises (s19)} \\ \text{:premises (s19)} \\ \text{:premises (a0 s20)} \\ \text{:premise (a0 s20)} \\ \text{:
```

SMT Proofs: Alternative View

Proofs as Terms

- Proofs are terms of a dedicated **Proof** type.
- The **Proof** type depends on the formula it proves.

Example

```
(andI
          ((assume t1)
                (rule2 (...(rule1 ((assume t2)))...))
         )
) : Proof (and t1 t4)
```

and introduction

```
(declare-rule andI ((F1 Bool) (F2 Bool))
    :premises (F1 F2)
    :conclusion (and F1 F2)
)
```

```
and introduction
```

```
(declare-rule andI ((F1 Bool) (F2 Bool))
    :premises (F1 F2)
    :conclusion (and F1 F2)
)
```

Resolution

- Ongoing work!
- How can we know Eunoia is sound?

- Ongoing work!
- How can we know Eunoia is sound?
- We model it in another programming language (Agda).

- Ongoing work!
- How can we know Eunoia is sound?
- We model it in another programming language (Agda).
- Symbols are associated with parameter lists.

- Ongoing work!
- How can we know Eunoia is sound?
- We model it in another programming language (Agda).
- Symbols are associated with parameter lists.
- Binding is handled locally via Meta-vectors.

- Ongoing work!
- How can we know Eunoia is sound?
- We model it in another programming language (Agda).
- Symbols are associated with parameter lists.
- Binding is handled locally via Meta-vectors.
 - e.g., bit-vectors that track bound variables.

- Ongoing work!
- How can we know Eunoia is sound?
- We model it in another programming language (Agda).
- Symbols are associated with parameter lists.
- Binding is handled locally via Meta-vectors.
 - e.g., bit-vectors that track bound variables.
- Divergence is handled via guards

- Ongoing work!
- How can we know Eunoia is sound?
- We model it in another programming language (Agda).
- Symbols are associated with parameter lists.
- Binding is handled locally via Meta-vectors.
 - e.g., bit-vectors that track bound variables.
- Divergence is handled via guards
 - you must provide evidence a program evaluates in finitely many steps.

Thank You!

This language is odd!

• No dedicated term datatype.

- No dedicated term datatype.
- Dependently typed, but there is no Π -binder.

- No dedicated term datatype.
- Dependently typed, but there is no Π -binder.
- Variables are scoped over types and case branches.

- No dedicated term datatype.
- Dependently typed, but there is no Π -binder.
- Variables are scoped over types and case branches.
 - Branch variables have the same general type,

- No dedicated term datatype.
- Dependently typed, but there is no Π -binder.
- Variables are scoped over types and case branches.
 - Branch variables have the same general type,
 - but type variables instantiation is branch independent.

- No dedicated term datatype.
- Dependently typed, but there is no Π -binder.
- Variables are scoped over types and case branches.
 - Branch variables have the same general type,
 - but type variables instantiation is branch independent.
- Programs can diverge.

- No dedicated term datatype.
- Dependently typed, but there is no Π -binder.
- Variables are scoped over types and case branches.
 - Branch variables have the same general type,
 - but type variables instantiation is branch independent.
- Programs can diverge.
- If there is no matching branch, they get stuck!