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An Example: Problem Specification

1. We produce 1L, 2L, and 3L bottles.
2. The price of a bottle is the volume plus

four times the wall thickness (in mm).
3. The price must be less than 4$.
4. If the newmachine is broken, we

cannot produce 3L bottles, and the wall
thickness must be more than 1mm.

5. The newmachine is broken.
6. For all bottle sizes, the wall thickness in

millimetre can at most be the volume in
liters.

1. 𝑣 = 1 ∨ 𝑣 = 2 ∨ 𝑣 = 3
2. 𝑣 + 2𝑡 < 𝑝

3. 𝑝 = 4
4. 𝑏 → (𝑣 ≠ 3 ∧ 𝑡 > 1)

5. 𝑏
6. ∀𝑧. 𝑣 = 𝑧 → 𝑡 ≤ 𝑧
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An Example: Preprocessing

1. 𝑣 = 1 ∨ 𝑣 = 2 ∨ 𝑣 = 3
2. 𝑣 + 2𝑡 < 𝑝
3. 𝑝 = 4
4. 𝑏 → (¬𝑣 = 3 ∧ 𝑡 > 1)

5. 𝑏
6. ∀𝑧. 𝑣 = 𝑧 → 𝑡 ≤ 𝑧

1. 𝑣 = 1 ∨ 𝑣 = 2 ∨ 𝑣 = 3
2. 𝑣 + 2𝑡 < 4
3.
4. ¬𝑏 ∨ ¬𝑣 = 3

¬𝑏 ∨ 1 < 𝑡
5. 𝑏
6. ∀𝑧. ¬𝑣 = 𝑧 ∨ ¬(𝑧 < 𝑡)
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An Example: The Ground Solver

• 𝑣 = 1 ∨ 𝑣 = 2 ∨ 𝑣 = 3
• 𝑣 + 2𝑡 < 4
• ¬𝑏 ∨ ¬𝑣 = 3
• ¬𝑏 ∨ 1 < 𝑡
• 𝑏
• ∀𝑧. ¬𝑣 = 𝑧 ∨ ¬(𝑧 < 𝑡)

SAT Problem
• 𝑝1 ∨ 𝑝2 ∨ 𝑝3
• 𝑝4
• ¬𝑏 ∨ ¬𝑝3
• ¬𝑏 ∨ 𝑝5
• 𝑏

Theory Literals
• 𝑝1 ∶= 𝑣 = 1, 𝑝2 ∶= 𝑣 = 2, 𝑝3 ∶= 𝑣 = 3
• 𝑝4 ∶= 𝑣 + 2𝑡 < 4
• 𝑝5 ∶= 𝑡 > 1
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An Example: The SAT Solver and the Theory Solver

SAT Problem
• 𝑝1 ∨ 𝑝2 ∨ 𝑝3
• 𝑝4
• ¬𝑏 ∨ ¬𝑝3
• ¬𝑏 ∨ 𝑝5
• 𝑏

Theory Literals
• 𝑝1 ∶= 𝑣 = 1, 𝑝2 ∶= 𝑣 = 2, 𝑝3 ∶= 𝑣 = 3
• 𝑝4 ∶= 𝑣 + 2𝑡 < 4
• 𝑝5 ∶= 𝑡 > 1

SAT Solver
I pick 𝑏, 𝑝2, 𝑝4, and 𝑝5

Linear Arithmetic Solver
1. I get 𝑣 = 2, 𝑣 + 2𝑡 < 4, and 𝑡 > 1
2. Doesn’t work:

¬𝑣 = 2 ∨ ¬(𝑣 + 2𝑡 < 4) ∨ ¬𝑡 > 1

SAT Solver
I have to pick 𝑏, 𝑝1, 𝑝4, and 𝑝5

Linear Arithmetic Solver
1. I get 𝑣 = 1, 𝑣 + 2𝑡 < 4, and 𝑡 > 1
2. That works!
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An Example: Quantifier Instantiation

SAT Problem
• 𝑝1 ∨ 𝑝2 ∨ 𝑝3
• 𝑝4
• ¬𝑏 ∨ ¬𝑝3
• ¬𝑏 ∨ 𝑝5
• 𝑏

Theory Literals
• 𝑝1 ∶= 𝑣 = 1, 𝑝2 ∶= 𝑣 = 2, 𝑝3 ∶= 𝑣 = 3
• 𝑝4 ∶= 𝑣 + 2𝑡 < 4
• 𝑝5 ∶= 𝑡 > 1

Instantiation Procedure
• I have ∀𝑧. ¬𝑣 = 𝑧 ∨ ¬𝑧 < 𝑡

• What happens if I pick 𝑧 ← 1?
• That’s ¬𝑣 = 1 ∨ ¬𝑡 > 1

SAT Solver
• That’s ¬𝑝1 ∨ ¬𝑝5
• Oh no
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Using SMT-LIB

(set-logic LRA)
(declare-const v Real) (declare-const t Real)
(declare-const b Bool)
(assert (or (= v 1) (= v 2) (= v 3)))
(assert (< (+ v (* 2 t)) p))
(assert (= p 4))
(assert (=> b (and (not (= v 3)) (> t 1))))
(assert b)
(assert (forall ((z Real)) (=> (= v z) (<= t z))))
(check-sat)

Most SMT solvers support SMT-LIB
Theories: arithmetic, arrays, data-types, bit-vectors, strings, ...
Yearly competition (SMT-COMP)
Large benchmark library

14



Some Solvers You Can Try (a Biased List)

• Small solver
• Excellent proofs, good quantifier

support
• www.verit-solver.org

• Industrial strength
• Supports everything
• cvc5.github.io

Bitwuzla
• Specialized on bit-vectors, and

floating-points
• Very fast
• bitwuzla.github.io

• Very established
• Also supports everything
• https:
//github.com/Z3Prover/z3

15
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Part II

SMT Proofs



Example Application: Zelkova

17



Zelkova

Zelkova Style SMT Constraints

Policy ⇒ Query is valid
¬(Policy ⇒ Query) is unsatisfiable

Policy ∧ ¬Query is unsatisfiable

• Query is against policy: satisfiable!
• Evidence: countermodel
• Easy to check by evaluation.

• Query follows policy: unsatisfiable!
• Evidence: refutation proof
• Hard!

18
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SMT Proofs: Basic Structure

𝑡1

𝑡2
𝑡3
⋮
𝑡4 andI𝑡1 ∧ 𝑡4

𝑡1, 𝑡2 ⊢ 𝑡1 ∧ 𝑡4

(assume a0 t1)
(assume a1 t2)
(step s1 t3

:premises (a1) :rule rule1)
...
(step s20 t4

:premises (s19) :rule rule2)
(step s21 (and t1 t4)

:premises (a0 s20) :rule andI)
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SMT Proofs: Alternative View

Proofs as Terms
• Proofs are terms of a dedicated Proof type.
• The Proof type depends on the formula it proves.

Example

(andI
((assume t1)

(rule2 (...(rule1 ((assume t2)))...))
)

) : Proof (and t1 t4)

20



Eunoia: ’s DSL to Describe Proof Rules

and introduction

(declare-rule andI ((F1 Bool) (F2 Bool))
:premises (F1 F2)
:conclusion (and F1 F2)

)

Resolution

(program $resolve ((C1 Bool) (C2 Bool) (pol Bool) (L Bool))
(Bool Bool Bool Bool) Bool
(($resolve C1 C2 pol L)

(eo::list_concat or ($nary_remove or false (eo::ite pol L (not L)) C1)
($nary_remove or false (eo::ite pol (not L) L) C2))

)
)
(declare-rule resolution ((C1 Bool) (C2 Bool) (pol Bool) (L Bool))

:premises (C1 C2) :args (pol L) :conclusion ($resolve C1 C2 pol L)
)
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Eunoia: ’s DSL to Describe Proof Rules

This language is odd!

• No dedicated term datatype.
• Dependently typed, but there is no Π-binder.
• Variables are scoped over types and case branches.

• Branch variables have the same general type,
• but type variables instantiation is branch independent.

• Programs can diverge.
• If there is no matching branch, they get stuck!
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System Y: A Mechanized Formal Core Language For Eunoia

• Ongoing work!
• Mechanized in Agda, so we can trust the results.

• Symbols are associated with parameter lists.
• Binding is handled locally via Meta-vectors.

• e.g., bit-vectors that track bound variables.

• Divergence is handled via guards

• youmust provide evidence a program evaluates in finitely
many steps.
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Thank You!
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