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Starting Point
Many human pursuits demand precise and correct reasoning.

® Our tool: formal logic.
® |t’s unfeasible to write formal proofs by hand:

Reliability mistakes happen easily
Effort horribly time consuming
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Software Supported Proof Construction

Automated Theorem Provers
“Push Button”
Usually refute problems and produce proofs.

Satisfiability Modulo Theories
Propositional reasoning + theories.
® Functions
® |inear Arithmetic
® Quantifiers
Examples:
® cvch
® veriT
e 73

Proof Assistants
Reliability trusted kernel
Effort proof construction routines
Examples:
® |sabelle/HOL
* Coq
® Lean

Automation
Must build upon the kernel.

e Simplifier: replaces equal by equal.

® Integration of automated theorem
provers.
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An Example: Problem Specification

1. We produce 1L, 2L, and 3L bottles.

2. The price of a bottle is the volume plus
four times the wall thickness (in mm).

3. The price must be less than 4.

4. If the new machine is broken, we
cannot produce 3L bottles, and the wall
thickness must be more than 1mm.

5. The new machine is broken.

6. For all bottle sizes, the wall thickness in
millimetre can at most be the volume in
liters.
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An Example: Preprocessing

l.v=1lorv=2o0rv=3 l.v=1lorv=20rv=3

2. v+2t<p 2. v+ 2t <4

3.p=4 3.
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An Example: Preprocessing

o

> w e

v=1lorv=20rv=3
v+2t<p

p=4

Ifbthen: notv =3andt > 1

b!

6. Forall z: ifv = zthent < z
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® pyOrpy0rps
® Py
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e y=1lorv=20rv=3
v+ 2t <4

[ ]

® notbornotv =3 not b or py
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® notbort >1 b

°0 Theory Literals

Forallznotv——sornett>—= o . o
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An Example: Quantifier Instantiation

SAT Problem
® Py Orpy OF p3
® Py
® notbornotp,
® notborp;
°b
® not p, or not p, or not p;

Theory Literals
® pisv=1,pyisv=2,pgisv =3
® pyisv+2t <4
® psist>1

Instantiation Procedure
® |haveForallz: notv = zornott > 2
* What happensif | pick z + 1? @
® That'snotv=1ornott > 1

SAT Solver
¢ That’s not p, or not p;
® Ohno &
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Do we get an argument for the contradiction?

1. Since the new machine is broken, the volume cannot be 3L, and the wall thickness
is> 1mm.

2. Ifthe volume would be 2L, and the thickness is larger than 1L, then we get a
contradiction with the price bound v + 2¢ < 4.

3. Sinceonly 1L, 2L, and 3L bottles are produced, the volume must be 1L.

4. Because, the wall thickness must be smaller than the volume in liters, the wall
thickness must be < 1mm.

5. This is a contradiction with the fact that we can only produce bottles with a wall
thickness > 1mm.

16



PartII
SMT Proofs in Use: Alethe in Isabelle/HOL




The Sledgehammer Pipeline

lemma f(z +5) = f((1 x5)+x)
1.

f(z+5) = f(5+ z) by x_unit

2. £+ 5 =254z bycong
3.
4. T by refl

x+5=x+5by+_com

18
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N
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The Sledgehammer Pipeline
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The Sledgehammer Pipeline

—

o Encode Problem

*************************** Filtering 7

Goal L= f(a +5) = f((1 % 5) +2) _

Add B := {x_unit, x_com, x_assoc, ...} E cves || veriT

Encode BA —L ¥

Try E, cvc5, veriT, ... veriT shows unsat! Preplay Extract Ufsat Core

Core C := {x_unit, +_com, cong, refl} :

Preplay simp, auto, smt on C' A —L, ... simp || auto || smt

smt shows unsat!
Donel Inform User

Try smt: x_unit, cong, +_com, refl
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Using Proofs: smt

\

Encode C A —L into SMT-LIB

v
Call veriT or Z3

!

Get Proof

¥
Reconstruct Proof

)
[Proof of L from C]

_

Encode Problem

Filtering 1
E cvehs veriT
v
Extract Unsat Core
Preplay T
simp auto smt

Inform User
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SMT Proof Reconstruction Circa 2018

veriT Proofs
® New in 2017: reasoning about binders. [Barbosa, et al. 2017]
® Reconstruction prototype by Fleury for validation. [Barbosa, et al. 2020]
® Philosophy: fine-grained proofs, natural deduction style.
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Alethe Proofs: Basic Structure

1 resolution

tty b L

(assume a0 t1)
(assume al t2)
(step s1 (cl t3)
:premises (al) :rule rulel)

(step s20 (cl (not t1))

:premises (s19) :rule rule2)
(step s21 (cl )

:premises (a0 s20) :rule resolution)
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Alethe Proofs: Subproofs With Assumptions

[2,]
bty
— —————subproof
t, —t,,t
Qt#resolution
3
ity

(assume a®  t1)
(step s1 (cl t2)
:premises (a0)
(anchor :step s2)
(assume s2.al t2)

(step  s2.s510 (cl t3)
:premises (s2.s9) :
(step s2 (cl (not t2) t3) :
(step s3 (cl t3)
:premises (s1 s2) :

:rule

rule
rule

rule

rulel)

rule2)
subproof)

resolution)
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Alethe Proofs: Subproofs With Assumptions

resolution

ity

(assume a0  t1)
(step s1 (cl t2)

:premises (a0) :rule rulel)

(step s3 (cl t3)
:premises (s1 s2) :rule resolution)

22



Alethe Proofs: Reasoning With Binders

(anchor :step s2 :args ((:= (x S) y)))

— refl (step s2.s1 (cl (= x y)) :rule refl)
Tyl TZY T ong (step 52.52 (cl (= (f x) (F y)))
TH=yb f($ = f(y) :rule cong)
bind (step s2 (cl (= (forall ((x S)) (f x))
Vy. f(y) (forall ((y $)) (f y)))

:rule bind)



Improving Alethe for Reconstruction

Important Hurdles Solved
® Clear term simplifications.
® No implicit clause normalizations.

e Certificates for linear arithmetic.
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Improving Alethe for Reconstruction

Important Hurdles Solved
® Clear term simplifications.
® No implicit clause normalizations.

e Certificates for linear arithmetic.

Other Improvements

® Complete documentation of the format.
® Rigorous handling of quantifiers.

® No implicit clausification.
® V-instantiation certificate: explicit substitution.

® Proper printing of number constants depending on theory.

A better algorithm for proof pruning.

Clever term sharing.
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Clear Term Simplifications

Can we improve proofs of preprocessing?
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Clear Term Simplifications

Can we improve proofs of preprocessing?

Proofs
Before asingle rule combining all simplifications, undocumented

Now 17 rules arranged by operators. Documented as rewrite rules.

e.g. x + 0 — xinsum_simplify.
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Clear Term Simplifications

Before

Now

Before

Now

Can we improve proofs of preprocessing?

Proofs
a single rule combining all simplifications, undocumented

17 rules arranged by operators. Documented as rewrite rules.
e.g. x + 0 — xinsum_simplify.

Reconstruction
automatic proof tactics are necessary, with tweaked timeouts.
directed use of the simplifier parameterized with the rewrite rules.

25



No Implicit Clause Normalizations

Clauses in conclusions are sometimes simplified, why?
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No Implicit Clause Normalizations

Clauses in conclusions are sometimes simplified, why?

Proofs
Before ——¢ implicitly simplified to ¢ in the proof module
Before clauses with complementary literals simplified to T
Before repeated literals implicitly eliminated
Now patch every proof step, e.g, add step ———¢ V ¢ and a resolution step
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No Implicit Clause Normalizations

Clauses in conclusions are sometimes simplified, why?

Proofs
Before ——¢ implicitly simplified to ¢ in the proof module
Before clauses with complementary literals simplified to T
Before repeated literals implicitly eliminated
Now patch every proof step, e.g, add step ———¢ V ¢ and a resolution step

Reconstruction
Before special case possible at every step!

rule (if pthen; elsety,) = —p V ¥,
step (if o then ~pelse,) = —p
Now no pollution in rule reconstruction.
step (if o then—pelse,) = —p V —p
26



Certificates for Linear Arithmetic

Reconstruction fails on this LA tautology: (2x < 3) = (z < 1) overZ
Why? Strengthening!
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Certificates for Linear Arithmetic

Reconstruction fails on this LA tautology: (2x < 3) = (z < 1) overZ
Why? Strengthening!

Proofs
Before just a clause of inequalities, no certificate.
Now strengthening documented.
(2r <3)=(z<1)
Strengthened: (2x <2) = (2 < 1)

Now certificate: coefficient. Here: % and 1.
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Certificates for Linear Arithmetic

Before
Now

Now

Before
Now
Now

Reconstruction fails on this LA tautology: (2x < 3) = (z < 1) overZ
Why? Strengthening!

Proofs
just a clause of inequalities, no certificate.
strengthening documented.

(2r <3)=(z<1)
Strengthened: (2x <2) = (2 < 1)

certificate: coefficient. Here: % and 1.

Reconstruction
certificate derived again.
reconstruction amounts to calculations.
can abstract nested terms: 2 x (if T then 1 else 0) treated as 2 x .
27



Evaluating smt

1. Pick an existing theory.
2. Try Sledgehammer on each obligation.

Encode Problem

Filtering 1
E cvch veriT
v
Extract Unsat Core
Preplay T
simp auto smt

Inform User
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Evaluating smt

1. Pick an existing theory.

2. Try Sledgehammer on each obligation.

® Did Sledgehammer succeed?

e Which tactic did preplay suggest?

e Preplay failure: there is a proof,
but it’s not usable!

® Also: how long does the tactic run?

Encode Problem

Filtering 1
E cvch veriT
v
Extract Unsat Core
Preplay T
simp auto smt

Inform User
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CVC4: Preplay Success Rate

HOL-Lib <bef°re
) now

(13.6 kGoals
PDE before
(1.7 kGoals) now
RP before

(1.7 kGoals)
now
Simplex before

(2.0 kGoals)

now

[JIsabelle tactics

| [ 15 | [0 Z3smt
| | X [0 veriTsmt
" [ Preplay failure
[0.8]
| i
[ Tog)
T
| | | |
50 55 60 65

Proven goals (%)
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CVC4: Preplay Time (smt only)

HOL-Lib <b6f°re
(13.6 kGoals) now

PDE before
(1.7 kGoals)

now

RP before

(1.7 kGoals) now

Simplex <before

(2.0 kGoals) now

|
]
]
]
]
]
1] S verT e
010 20 80 a0 s w0 70 80

Time (seconds)
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CVC4: Preplay Time (smt only)

HOL-Lib <before |
(13.6 kGoals) now | l
PDE before
(1.7 kGoals) <
vow S
RP before
(1.7 kGoals) how :l:l]
Simplex <before:| O Z3 smt
(2.0 kGoals) [ veriT smt
now
:D:] [JveriT smt (new)
v b b b e b v b b e b1

0 10 20 30 40 50 60 70 80
Time (seconds)



Conclusion

Reconstruction
® 611 smt-veriT calls in AFP.
® Granular proofs matter.
® Proofsize is critical.

SMT Proofs
® Danger of “Proof Rot.”
® Proof checking can prevent this.

e The familiar SMT-LIB syntax reduced debugging pain.

e Solver design leaks to the format.
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Part II1
e Future: Aleth




What do we want?

Staying in Sync
® Documentation
® Proof production
® Proof checking

Designed for SMT Solvers
® Feels like using SMT-LIB

® Flexible enough to capture solver design details
® Fast!
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What do we want?

Staying in Sync
® Documentation
® Proof production
® Proof checking

Designed for SMT Solvers
® Feels like using SMT-LIB

® Flexible enough to capture solver design details
® Fast!

Integrated in
cvch!
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Proofs in cve5

e [nternal proof calculus

Roughly 142 rules (132 core + 10 macro)
Native proof checker in cvc5’s core
Original focus was on theory of strings
Multiple backends

e Evaluated on many SMT-LIB theories
[Barbosa, et al. 2022]

SAT Solver

Theory Solvers

Combihation

CNF

SAT

Rewriting InputF
u

Preprpcessing

CNF

34



Proofs in cve5

CNF+Preprocess Proof

Preprocessor

Input F’

Proof Sketch

(resolution+t-lemmas)

¥

Theory Solvers

SAT Solver

cveh

Proof (internal)

Proof (format x) |-'

Proof
Checker X

—42
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RARE: a DSL for Proofs of Rewrites

(define-rule* str-concat-unify
((s1 String)

A DSL to express rewrite rules (s2 String) (s3 String :list)
(t2 String) (t3 String :list))
(= (str.++ s1 s2 s3)

Key element of preprocessing: rewriting

e Automatic elaboration during post-processing

e Large library of rewrites (strings, bitvectors, ...) (str.++ s1 t2 t3))
® Translation pipeline to Isabelle/HOL (= E:;: i% ig;))

36



Proofs with RARE in cvc5

Rewrites (RarE) l—* IsaRare »a

CNF+Preprocess Proof

Postprocessor

Preprocessor

Input F’

Proof Sketch

(resolution+t-lemmas)

Proof (internal)

)
Theory Solvers
SAT Solver

Proof Converter X

Proof Printer X

| Rewrites (format X) |_’| Proof (format X) |"

Proof
Checker X

—42
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Why not Alethe?

@ A pen-and-paper standard: danger of proof rot
@ Limited set of theories.

@ No rule to proof testing pipeline.

@ Does not capture cvc5’s type system, proof calculus
® incurs large post-processing cost

38



Why not LFSC?

What is LFSC?

® Dedicated logical framework (LF) for SMT proofs. [Oe, et al. 2009], [Stump,
et al. 2013], [Hadarean, et al. 2015], [Katz, et al. 2016]

® Based on Edinburg Logical Framework (LF) extended with side conditions.
e Allows user defined proof rules.

@ Performance.

@ Proof rules must encoded at a low level.
@ Syntax for terms does not match SMT-LIB.
@ Limited tooling support.
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Why not LFSC?

What is LFSC?

® Dedicated logical framework (LF) for SMT proofs. [Oe, et al. 2009], [Stump,
et al. 2013], [Hadarean, et al. 2015], [Katz, et al. 2016]

® Based on Edinburg Logical Framework (LF) extended with side conditions.
e Allows user defined proof rules.

@ Performance.
@ Proof rules must encoded at a low level.

@ Syntax for terms does not match SMT-LIB.
@ Limited tooling support. AlethelF:
Alethe x LFSC
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Proofs with AletheLF in cve5

Rewrites (RarE) l—* IsaRare »a

CNF+Preprocess Proof

Postprocessor

Preprocessor

Input F’

Proof Sketch

(resolution+t-lemmas)

Proof (internal)

)
Theory Solvers
SAT Solver

Proof Converter (aLr)

Proof Printer (aLr
sl | Rule Signature (ap) |

| Rewrites (aLF)

|—’| Proof (aLF) |'" alfc ’—’°
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Example: Symmetry of Equality

(declare-const = (-> (! Type :var T :implicit) T T Bool))
(declare-rule symm ((T Type) (t T) (s T))

:premises ((= t s))

:conclusion (= s t)

)

(declare-sort S 0)
(declare-const a S)
(declare-const b S)

(assume @ad (= a b))
(step @s1 (= b a) :rule symm :premises (@a0))
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Example: And-Elimination

(declare-const and (-> Bool Bool Bool))
(program select ((i Int) (1 Bool) (r Bool))
(Int Bool) Bool
(
((select 1 (and 1 r)) 1)
((select 2 (and 1 r)) r)
)
)
(declare-rule and-elim ((1 Bool) (r Bool) (i Int))
:premises ((and 1 r))
:args (i)
:conclusion (select 1 (and 1 r))

)

(declare-const p Bool)
(declare-const q Bool)

(assume @ad (and p q))
(step @s1 q :rule and-elim :premises (@a®) :args (2))
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Evaluation: AletheLF vs. LFSC

—— y=05x
—— y=1x
y=2x

97348 benchmarks

60s timeout
All quantifier-free SMT-LIB logics
with

® strings

® linear arithmetic

® uninterpreted functions

alfc 1.56x faster

® Due to flexibility in AletheLF (e.g.

uses chain resolution)
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What about SAT proofs?

Why do we care?

® Proof production in for SAT solvers has been successful:

® DRAT is everywhere!
® cvc5 now uses configurable SAT solver

® viathe IPASIR-UP API (IPASIR with user propagators)
® Notably, cvc5 supports CaDiCal
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What about SAT proofs?

Why do we care?

® Proof production in for SAT solvers has been successful:
® DRAT is everywhere!
® cvc5 now uses configurable SAT solver

® viathe IPASIR-UP API (IPASIR with user propagators)
® Notably, cvc5 supports CaDiCal

In AletheLF
® Integrate via oracles
e Usedeclare-oracle-fun to declare an interface with an external program.
e Communication using SMT-LIB syntax.
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Proofs from cvc5 with SAT proofs

Rewrites (RarE) l—* IsaRare »a

CNF+Preprocess Proof

Postprocessor

Preprocessor

Input F’

Proof Sketch

(resolution+t-lemmas)

Proof (internal)

)
Theory Solvers
SAT Solver

Proof Converter (aLr)

Proof Printer (aLr
sl | Rule Signature (ap) |

| Rewrites (aLF)

|—’| Proof (aLF) |'" alfc ’—’°
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Proofs from cvc5 with SAT proofs

Input F Rewrites (RArE) |—> IsaRare '—>°

Preprocessor CNF+Preprocess Proof

Proof Sketch
Input F’ (resolution+t-lemmas)

Postprocessor

Proof (internal)

¥
Theory Solvers Proof Converte

cveh SO0t BHnter |RuleSignature(A|_F)|
- ~

DIMACS | Rewriteswr [~ Proofmn [~ _alfc —»&
e
CaDiCalL

drat-trim




Evaluation: AletheLF with DRAT vs. resolution

10.0

—— y=05x
—y=1x
o y=2x

® DRAT scales better than res on
harder examples

® DRAT 1.34x faster for
benchmarks >5s
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Evaluation: Proof Overhead

e 7.9x overhead solving+proof
checking (unsat)

® 1.4x for SAT problems

m solving (12.6%)
= |ogging (15.2%)
‘ ® postprocessing (20.3%)

= ALF check (47.6%)

m DRAT check (4.3%)
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The Current Status

Ongoing Work
e Polish alfc for release.
® Use AletheLF as the internal format for cvc5 proofs.
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https://cvc5.github.io
https://github.com/cvc5/alfc
https://github.com/cvc5/AletheInAlf

AletheLF for internal proofs?

Input F Rewrites (RArE) |—> IsaRare '—>°

Preprocessor CNF+Preprocess Proof

Proof Sketch
Input F’ (resolution+t-lemmas)

Postprocessor

Proof (internal)

¥
Theory Solvers Proo erte

SAT Solver cvces ARt |RuleSignature(A|_F)|

DIMACS ‘%%ﬁ—{ Proofn [~ alfc —»&
e
CaDiCalL

drat-trim




AletheLF for internal proofs?

Input F Rewrites (aLF) R IsaRare Ha

Preprocessor CNF+Preprocess Proof
Postprocessor

Proof Sketch
Input F’ (resolution+t-lemmas)

¥
Theory Solvers
cveh

DIMACS | Proofwn [+ alfc —»&
we ) e s o
CaDiCalL

drat-trim

Proof (aLF)




The Current Status

Ongoing Work

e Polish alfc for release.

® Use AletheLF as the internal format for cvc5 proofs.

® Express the Alethe calculus in AlethelLF.
® Formalize the core of AletheLF in Agda.
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https://cvc5.github.io
https://github.com/cvc5/alfc
https://github.com/cvc5/AletheInAlf

The Current Status

Ongoing Work
e Polish alfc for release.
® Use AletheLF as the internal format for cvc5 proofs.
® Express the Alethe calculus in AlethelLF.
® Formalize the core of AletheLF in Agda.

Tryit!
e cvc5: https://cve5.github.io
® use --dump-proofs --proof-format=alf
e alfc with documentation: https://github.com/cvc5/alfc
® Alethein AletheLF: https://github.com/cvc5/AletheInAlf
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Thank You!

,CVC5, meriT

IOWA
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