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Building Formal Arguments

Starting Point
Many human pursuits demand precise and correct reasoning.

• Our tool: formal logic.
• It’s unfeasible to write formal proofs by hand:

Reliability mistakes happen easily
Effort horribly time consuming
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Software Supported Proof Construction

Automated Theorem Provers
“Push Button”
Usually refute problems and produce proofs.

Satisfiability Modulo Theories
Propositional reasoning + theories.

• Functions
• Linear Arithmetic
• Quantifiers

Examples:
• cvc5
• veriT
• Z3

Proof Assistants
Reliability trusted kernel

Effort proof construction routines
Examples:

• Isabelle/HOL
• Coq
• Lean

Automation
Must build upon the kernel.

• Simplifier: replaces equal by equal.
• Integration of automated theorem

provers.
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Part I

Tour Of SMT Solving



SMT Solving As A Diagram

SAT Solver

Theory Solver

Instantiation Procedure

Preprocessor

Problem
SAT

UNSAT

Timeout
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An Example: Problem Specification

1. We produce 1L, 2L, and 3L bottles.
2. The price of a bottle is the volume plus

four times the wall thickness (in mm).
3. The price must be less than 4$.
4. If the newmachine is broken, we

cannot produce 3L bottles, and the wall
thickness must be more than 1mm.

5. The newmachine is broken.
6. For all bottle sizes, the wall thickness in

millimetre can at most be the volume in
liters.

1. 𝑣 = 1 or 𝑣 = 2 or 𝑣 = 3
2. 𝑣 + 2𝑡 < 𝑝
3. 𝑝 = 4
4. If 𝑏 then: not 𝑣 = 3 and 𝑡 > 1
5. 𝑏!
6. For all 𝑧: if 𝑣 = 𝑧 then 𝑡 ≤ 𝑧
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An Example: Preprocessing

1. 𝑣 = 1 or 𝑣 = 2 or 𝑣 = 3
2. 𝑣 + 2𝑡 < 𝑝
3. 𝑝 = 4
4. If 𝑏 then: not 𝑣 = 3 and 𝑡 > 1

5. 𝑏!
6. For all 𝑧: if 𝑣 = 𝑧 then 𝑡 ≤ 𝑧

1. 𝑣 = 1 or 𝑣 = 2 or 𝑣 = 3
2. 𝑣 + 2𝑡 < 4
3.
4. not 𝑏 or not 𝑣 = 3

not 𝑏 or 𝑡 > 1
5. 𝑏
6. For all 𝑧: not 𝑣 = 𝑧 or not 𝑡 > 𝑧
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SAT Solver

Theory Solver

Instantiation Procedure

Preprocessor
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SAT
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An Example: The Ground Solver

• 𝑣 = 1 or 𝑣 = 2 or 𝑣 = 3
• 𝑣 + 2𝑡 < 4
• not 𝑏 or not 𝑣 = 3
• not 𝑏 or 𝑡 > 1
• 𝑏
• For all 𝑧: not 𝑣 = 𝑧 or not 𝑡 > 𝑧

SAT Problem
• 𝑝1 or 𝑝2 or 𝑝3
• 𝑝4
• not 𝑏 or not 𝑝3
• not 𝑏 or 𝑝5
• 𝑏

Theory Literals
• 𝑝1 is 𝑣 = 1, 𝑝2 is 𝑣 = 2, 𝑝3 is 𝑣 = 3
• 𝑝4 is 𝑣 + 2𝑡 < 4
• 𝑝5 is 𝑡 > 1
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An Example: The SAT Solver and the Theory Solver

SAT Problem
• 𝑝1 or 𝑝2 or 𝑝3
• 𝑝4
• not 𝑏 or not 𝑝3
• not 𝑏 or 𝑝5
• 𝑏

• not 𝑝2 or not 𝑝4 or not 𝑝5

Theory Literals
• 𝑝1 is 𝑣 = 1, 𝑝2 is 𝑣 = 2, 𝑝3 is 𝑣 = 3
• 𝑝4 is 𝑣 + 2𝑡 < 4
• 𝑝5 is 𝑡 > 1

SAT Solver
I pick 𝑏, 𝑝2, 𝑝4, and 𝑝5

Linear Arithmetic Solver
1. I get 𝑣 = 2, 𝑣 + 2𝑡 < 4, and 𝑡 > 1
2. Doesn’t work: not 𝑣 = 2 or not

𝑣 + 4𝑡 < 4 or not 𝑡 > 1

SAT Solver
I have to pick 𝑏, 𝑝1, 𝑝4, and 𝑝5

Linear Arithmetic Solver
1. I get 𝑣 = 1, 𝑣 + 2𝑡 < 4, and 𝑡 > 1
2. That works!
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• 𝑝4 is 𝑣 + 2𝑡 < 4
• 𝑝5 is 𝑡 > 1

SAT Solver
I pick 𝑏, 𝑝2, 𝑝4, and 𝑝5

Linear Arithmetic Solver
1. I get 𝑣 = 2, 𝑣 + 2𝑡 < 4, and 𝑡 > 1
2. Doesn’t work: not 𝑣 = 2 or not

𝑣 + 4𝑡 < 4 or not 𝑡 > 1

SAT Solver
I have to pick 𝑏, 𝑝1, 𝑝4, and 𝑝5

Linear Arithmetic Solver
1. I get 𝑣 = 1, 𝑣 + 2𝑡 < 4, and 𝑡 > 1
2. That works!
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SMT Solving As A Diagram

SAT Solver

Theory Solver

Instantiation Procedure

Preprocessor

Problem
SAT

UNSAT

Timeout
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An Example: Quantifier Instantiation

SAT Problem
• 𝑝1 or 𝑝2 or 𝑝3
• 𝑝4
• not 𝑏 or not 𝑝3
• not 𝑏 or 𝑝5
• 𝑏

• not 𝑝2 or not 𝑝4 or not 𝑝5

Theory Literals
• 𝑝1 is 𝑣 = 1, 𝑝2 is 𝑣 = 2, 𝑝3 is 𝑣 = 3
• 𝑝4 is 𝑣 + 2𝑡 < 4
• 𝑝5 is 𝑡 > 1

Instantiation Procedure
• I have For all z: not 𝑣 = 𝑧 or not 𝑡 > 𝑧

• What happens if I pick 𝑧 ← 1?
• That’s not 𝑣 = 1 or not 𝑡 > 1

SAT Solver
• That’s not 𝑝1 or not 𝑝5
• Oh no
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Do we get an argument for the contradiction?

1. Since the newmachine is broken, the volume cannot be 3L, and the wall thickness
is > 1mm.

2. If the volume would be 2L, and the thickness is larger than 1L, then we get a
contradiction with the price bound 𝑣 + 2𝑡 < 4.

3. Since only 1L, 2L, and 3L bottles are produced, the volumemust be 1L.
4. Because, the wall thickness must be smaller than the volume in liters, the wall

thickness must be < 1mm.
5. This is a contradiction with the fact that we can only produce bottles with a wall

thickness > 1mm.
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Part II

SMT Proofs in Use: Alethe in Isabelle/HOL



The Sledgehammer Pipeline

•••
lemma 𝑓(𝑥 + 5) = 𝑓((1 × 5) + 𝑥)
1. 𝑓(𝑥 + 5) = 𝑓(5 + 𝑥) by ×_unit
2. 𝑥 + 5 = 5 + 𝑥 by cong
3. 𝑥 + 5 = 𝑥 + 5 by +_com
4. ⊤ by refl

Start

Encode Problem

cvc5E veriT …

Extract Unsat Core

autosimp smt …

Inform User

Filtering

Preplay
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Using Proofs: smt

Encode 𝐶 ∧ ¬𝐿 into SMT-LIB

Call veriT or Z3

Get Proof
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SMT Proof Reconstruction Circa 2018

veriT Proofs
• New in 2017: reasoning about binders. [Barbosa, et al. 2017]
• Reconstruction prototype by Fleury for validation. [Barbosa, et al. 2020]
• Philosophy: fine-grained proofs, natural deduction style.

The smt tactic: Z3 only
• From 2009, by Böhme, et al.
• Stable, but bound to a specific Z3 version.
• Macro rules, different philosophy.

Questions
• Can wemake the proofs more rigorous?

Yes: Alethe!

• What can we learn from doing reconstruction?

Next Part.

• Is veriT’s fine-grained proof & quantifier support useful?

Yes: veriT smt!

20
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Alethe Proofs: Basic Structure

𝑡1

𝑡2
𝑡3
⋮

¬𝑡1 resolution⊥
𝑡1, 𝑡2 ⊢ ⊥

(assume a0 t1)
(assume a1 t2)
(step s1 (cl t3)

:premises (a1) :rule rule1)
...
(step s20 (cl (not t1))

:premises (s19) :rule rule2)
(step s21 (cl )

:premises (a0 s20) :rule resolution)
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Alethe Proofs: SubproofsWith Assumptions

𝑡1
𝑡2

[𝑡2]
⋮
𝑡3 subproof¬𝑡2, 𝑡3

resolution𝑡3

𝑡1 ⊢ 𝑡3

(assume a0 t1)
(step s1 (cl t2)

:premises (a0) :rule rule1)
(anchor :step s2)
(assume s2.a1 t2)
...
(step s2.s10 (cl t3)

:premises (s2.s9) :rule rule2)
(step s2 (cl (not t2) t3) :rule subproof)
(step s3 (cl t3)

:premises (s1 s2) :rule resolution)

22



Alethe Proofs: SubproofsWith Assumptions
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𝑡2
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...
(step s2.s10 (cl t3)

:premises (s2.s9) :rule rule2)
(step s2 (cl (not t2) t3) :rule subproof)
(step s3 (cl t3)
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Alethe Proofs: ReasoningWith Binders

refl𝑥 ↦ 𝑦 ⊳ 𝑥 = 𝑦 cong
𝑥 ↦ 𝑦 ⊳ 𝑓(𝑥) = 𝑓(𝑦)

bind∀𝑥. 𝑓(𝑥) = ∀𝑦. 𝑓(𝑦)

⊢ ∀𝑥. 𝑓(𝑥) = ∀𝑦. 𝑓(𝑦)

(anchor :step s2 :args ((:= (x S) y)))
(step s2.s1 (cl (= x y)) :rule refl)
(step s2.s2 (cl (= (f x) (f y)))

:rule cong)
(step s2 (cl (= (forall ((x S)) (f x))

(forall ((y S)) (f y)))
:rule bind)
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Improving Alethe for Reconstruction

Important Hurdles Solved
• Clear term simplifications.
• No implicit clause normalizations.
• Certificates for linear arithmetic.

Other Improvements
• Complete documentation of the format.
• Rigorous handling of quantifiers.

• No implicit clausification.
• ∀-instantiation certificate: explicit substitution.

• Proper printing of number constants depending on theory.
• A better algorithm for proof pruning.
• Clever term sharing.
• ...
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Clear Term Simplifications

Can we improve proofs of preprocessing?

Proofs
Before a single rule combining all simplifications, undocumented

⊨𝑇 Γ ⊳ 𝑡 = 𝑢

Now 17 rules arranged by operators. Documented as rewrite rules.
e.g. 𝑥 + 0 → 𝑥 in sum_simplify.

Reconstruction
Before automatic proof tactics are necessary, with tweaked timeouts.
Now directed use of the simplifier parameterized with the rewrite rules.
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No Implicit Clause Normalizations

Clauses in conclusions are sometimes simplified, why?

Proofs
Before ¬¬𝜑 implicitly simplified to 𝜑 in the proof module
Before clauses with complementary literals simplified to ⊤
Before repeated literals implicitly eliminated
Now patch every proof step, e.g, add step ¬¬¬𝜑 ∨ 𝜑 and a resolution step

Reconstruction
Before special case possible at every step!

rule (if𝜑 then𝜓1 else𝜓2) ⇒ ¬𝜑 ∨ 𝜓1
step (if𝜑 then¬𝜑 else𝜓2) ⇒ ¬𝜑

Now no pollution in rule reconstruction.
step (if𝜑 then¬𝜑 else𝜓2) ⇒ ¬𝜑 ∨ ¬𝜑
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Certificates for Linear Arithmetic

Reconstruction fails on this LA tautology: (2𝑥 < 3) = (𝑥 ≤ 1) over ℤ
Why? Strengthening!

Proofs
Before just a clause of inequalities, no certificate.
Now strengthening documented.

(2𝑥 < 3) = (𝑥 ≤ 1)
Strengthened: (2𝑥 ≤ 2) = (𝑥 ≤ 1)

Now certificate: coefficient. Here: 1
2 and 1.

Reconstruction
Before certificate derived again.
Now reconstruction amounts to calculations.
Now can abstract nested terms: 2 × (if⊤ then 1 else 0) treated as 2 × 𝑥.
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Evaluating smt

1. Pick an existing theory.
2. Try Sledgehammer on each obligation.

• Did Sledgehammer succeed?
• Which tactic did preplay suggest?
• Preplay failure: there is a proof,

but it’s not usable!
• Also: how long does the tactic run?

Start

Encode Problem

cvc5E veriT …

Extract Unsat Core

autosimp smt …

Inform User

Filtering

Preplay
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CVC4: Preplay Success Rate
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CVC4: Preplay Time (smt only)
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CVC4: Preplay Time (smt only)
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Conclusion

Reconstruction
• 611 smt-veriT calls in AFP.
• Granular proofs matter.
• Proof size is critical.

SMT Proofs
• Danger of “Proof Rot.”
• Proof checking can prevent this.
• The familiar SMT-LIB syntax reduced debugging pain.
• Solver design leaks to the format.
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Part III

The Future: AletheLF



What do we want?

Staying in Sync
• Documentation
• Proof production
• Proof checking

Designed for SMT Solvers
• Feels like using SMT-LIB
• Flexible enough to capture solver design details
• Fast!
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What do we want?

Staying in Sync
• Documentation
• Proof production
• Proof checking

Designed for SMT Solvers
• Feels like using SMT-LIB
• Flexible enough to capture solver design details
• Fast! Integrated in

cvc5!
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Proofs in cvc5

• Internal proof calculus
• Roughly 142 rules (132 core + 10 macro)
• Native proof checker in cvc5’s core
• Original focus was on theory of strings
• Multiple backends

• Evaluated onmany SMT-LIB theories
[Barbosa, et al. 2022]

Theory Solvers
SAT Solver

Preprocessor

CNF CNF

Input F

Rewriter

CNF

SAT

Preprocessing

Rewriting

T-LemmasT-Lemmas

Combination
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Proofs in cvc5

SAT Solver

Preprocessor

Input F

Postprocessor
Proof Sketch 

(resolution+t-lemmas) Proof (internal)

Proof Converter X

Proof Printer X

Proof (format X)

Input F’

cvc5
Proof

Checker X 

Theory Solvers

CNF+Preprocess Proof
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RARE: a DSL for Proofs of Rewrites

• Key element of preprocessing: rewriting
• A DSL to express rewrite rules
• Automatic elaboration during post-processing
• Large library of rewrites (strings, bitvectors, ...)
• Translation pipeline to Isabelle/HOL

(define-rule* str-concat-unify
((s1 String)
(s2 String) (s3 String :list)
(t2 String) (t3 String :list))
(= (str.++ s1 s2 s3)

(str.++ s1 t2 t3))
(= (str.++ s2 s3)

(str.++ t2 t3)))
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Proofs with RARE in cvc5

SAT Solver

Preprocessor

Input F

Postprocessor
Proof Sketch 

(resolution+t-lemmas) Proof (internal)

Proof Converter X

Proof Printer X

Proof (format X)

Input F’

cvc5
Proof

Checker X 

Theory Solvers

CNF+Preprocess Proof

Rewrites (RARE) IsaRare

Rewrites (format X)

37



Why not Alethe?

A pen-and-paper standard: danger of proof rot
Limited set of theories.
No rule to proof testing pipeline.
Does not capture cvc5’s type system, proof calculus

• incurs large post-processing cost
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Why not LFSC?

What is LFSC?
• Dedicated logical framework (LF) for SMT proofs. [Oe, et al. 2009], [Stump,

et al. 2013], [Hadarean, et al. 2015], [Katz, et al. 2016]
• Based on Edinburg Logical Framework (LF) extended with side conditions.
• Allows user defined proof rules.

Performance.
Proof rules must encoded at a low level.
Syntax for terms does not match SMT-LIB.
Limited tooling support.
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Proofs with AletheLF in cvc5

SAT Solver

Preprocessor

Input F

Postprocessor
Proof Sketch 

(resolution+t-lemmas) Proof (internal)

Proof Converter (ALF)

Proof Printer (ALF)

Proof (ALF)

Input F’

cvc5
alfc 

Theory Solvers

CNF+Preprocess Proof

Rewrites (RARE) IsaRare

Rewrites (ALF)

Rule Signature (ALF)
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Example: Symmetry of Equality

(declare-const = (-> (! Type :var T :implicit) T T Bool))
(declare-rule symm ((T Type) (t T) (s T))

:premises ((= t s))
:conclusion (= s t)

)

(declare-sort S 0)
(declare-const a S)
(declare-const b S)

(assume @a0 (= a b))
(step @s1 (= b a) :rule symm :premises (@a0))
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Example: And-Elimination

(declare-const and (-> Bool Bool Bool))
(program select ((i Int) (l Bool) (r Bool))

(Int Bool) Bool
(

((select 1 (and l r)) l)
((select 2 (and l r)) r)

)
)
(declare-rule and-elim ((l Bool) (r Bool) (i Int))

:premises ((and l r))
:args (i)
:conclusion (select i (and l r))

)

(declare-const p Bool)
(declare-const q Bool)

(assume @a0 (and p q))
(step @s1 q :rule and-elim :premises (@a0) :args (2))
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Evaluation: AletheLF vs. LFSC

• 97348 benchmarks
• 60s timeout
• All quantifier-free SMT-LIB logics
with

• strings
• linear arithmetic
• uninterpreted functions

• alfc 1.56x faster
• Due to flexibility in AletheLF (e.g.

uses chain resolution)
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What about SAT proofs?

Why do we care?
• Proof production in for SAT solvers has been successful:

• DRAT is everywhere!
• cvc5 now uses configurable SAT solver

• via the IPASIR-UP API (IPASIR with user propagators)
• Notably, cvc5 supports CaDiCaL

In AletheLF
• Integrate via oracles
• Use declare-oracle-fun to declare an interface with an external program.
• Communication using SMT-LIB syntax.

44



What about SAT proofs?

Why do we care?
• Proof production in for SAT solvers has been successful:

• DRAT is everywhere!
• cvc5 now uses configurable SAT solver

• via the IPASIR-UP API (IPASIR with user propagators)
• Notably, cvc5 supports CaDiCaL

In AletheLF
• Integrate via oracles
• Use declare-oracle-fun to declare an interface with an external program.
• Communication using SMT-LIB syntax.

44



Proofs from cvc5 with SAT proofs

SAT Solver

Preprocessor

Input F

Postprocessor
Proof Sketch 

(resolution+t-lemmas) Proof (internal)
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Proof Printer (ALF)
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Input F’

cvc5
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Theory Solvers
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Rule Signature (ALF)
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Input F’
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DIMACS
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Evaluation: AletheLF with DRAT vs. resolution

• DRAT scales better than res on
harder examples

• DRAT 1.34x faster for
benchmarks >5s
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Evaluation: Proof Overhead

• 7.9x overhead solving+proof
checking (unsat)

• 1.4x for SAT problems
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The Current Status

Ongoing Work
• Polish alfc for release.
• Use AletheLF as the internal format for cvc5 proofs.

• Express the Alethe calculus in AletheLF.
• Formalize the core of AletheLF in Agda.

Try it!
• cvc5: https://cvc5.github.io

• use --dump-proofs --proof-format=alf
• alfc with documentation: https://github.com/cvc5/alfc
• Alethe in AletheLF: https://github.com/cvc5/AletheInAlf
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AletheLF for internal proofs?
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Thank You!
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