
The Alethe Proof Format
An Overview

Hans-Jörg Schurr
May 12 2023

Structure

1. Small number of slides.
2. Interactive exploration.

• I only have slides for 𝑡 < 𝑡allocated

2

What is Alethe?

Alethe is…
…a format to represent derivations of the empty clause from an
SMT problem.

• A language (think TSTP)
and a collection of proof rules.

• Ongoing work, but there are multiple users!

3

Catability

• Alethe is a language for machines, but
• when a human runs cat on an Alethe file they
should not be shocked.

How?
• Follow SMT-LIB ideas.
• Formulas are SMT-LIB formulas + choice.
• Proof-appropriate commands.
• Reuse other ideas, such as annotations.

4

Catability

• Alethe is a language for machines, but
• when a human runs cat on an Alethe file they
should not be shocked.

How?
• Follow SMT-LIB ideas.
• Formulas are SMT-LIB formulas + choice.
• Proof-appropriate commands.
• Reuse other ideas, such as annotations.

4

Some History

A long time ago
• For veriT: EUF, LIRA, QF_
• First: Ad-hoc 2006
• Later: Redesigned 2011
• Syntax changed over time

Soon after
• SMTCoq one of the first users
• Verified checker 2011
• Base for automation in Coq

2017, now

Recently
• Support for reasoning with bound
variables 2017, 2020

• Isabelle/HOL integration
2021, now

• cvc5 support 2021
• Proof checker 2022

Proofonomicon

Now!
Speculative Specification
It’s now Alethe!

5

Some History

A long time ago
• For veriT: EUF, LIRA, QF_
• First: Ad-hoc 2006
• Later: Redesigned 2011
• Syntax changed over time

Soon after
• SMTCoq one of the first users
• Verified checker 2011
• Base for automation in Coq

2017, now

Recently
• Support for reasoning with bound
variables 2017, 2020

• Isabelle/HOL integration
2021, now

• cvc5 support 2021
• Proof checker 2022

Proofonomicon

Now!
Speculative Specification
It’s now Alethe!

5

Users

Producers
• veriT

+ Stable
+ Well documented
– Exposes internals
– Limited

• cvc5
+ Powerful
+ Principled
– Undocumented
o Rewrites

Consumers
• Carcara

• Proof checker
and elaborator

• Fast
• Good feature coverage

• Isabelle/HOL
• Alethe powered tactic
• excelent veriT support
• ongoing for cvc5

• SMTCoq
• translates to an internal format
• ongoing

6

Users

Producers
• veriT

+ Stable
+ Well documented
– Exposes internals
– Limited

• cvc5
+ Powerful
+ Principled
– Undocumented
o Rewrites

Consumers
• Carcara

• Proof checker
and elaborator

• Fast
• Good feature coverage

• Isabelle/HOL
• Alethe powered tactic
• excelent veriT support
• ongoing for cvc5

• SMTCoq
• translates to an internal format
• ongoing

6

Resources

• Material on https://schurr.io
• Documentation –
https://gitlab.uliege.be/verit/alethe

• Checker –
https://github.com/ufmg-smite/carcara

• veriT – http://www.verit-solver.org
• cvc5 – https://cvc5.github.io

7

https://schurr.io
https://gitlab.uliege.be/verit/alethe
https://github.com/ufmg-smite/carcara
http://www.verit-solver.org
https://cvc5.github.io

Alethe Proofs: Basic Structure

𝑡1

𝑡2
𝑡3
⋮

¬𝑡1 resolution⊥
𝑡1, 𝑡2 ⊢ ⊥

(assume a0 t1)
(assume a1 t2)
(step s1 (cl t3)

:premises (a1) :rule rule1)
...
(step s20 (cl (not t1))

:premises (s19) :rule rule2)
(step s21 (cl)

:premises (a0 s20) :rule resolution)

8

Alethe Proofs: SubproofsWith Assumptions

𝑡1
𝑡2

[𝑡2]
⋮
𝑡3 subproof¬𝑡2, 𝑡3

resolution𝑡3

𝑡1 ⊢ 𝑡3

(assume a0 t1)
(step s1 (cl t2)

:premises (a0) :rule rule1)
(anchor :step s2)

(assume s2.a1 t2)
...
(step s2.s10 (cl t3)

:premises (s2.s9) :rule rule2)
(step s2 (cl (not t2) t3) :rule subproof)
(step s3 (cl t3)

:premises (s1 s2) :rule resolution)

9

Alethe Proofs: SubproofsWith Assumptions

𝑡1
𝑡2

[𝑡2]
⋮
𝑡3 subproof¬𝑡2, 𝑡3

resolution𝑡3

𝑡1 ⊢ 𝑡3

(assume a0 t1)
(step s1 (cl t2)

:premises (a0) :rule rule1)
(anchor :step s2)

(assume s2.a1 t2)
...
(step s2.s10 (cl t3)

:premises (s2.s9) :rule rule2)
(step s2 (cl (not t2) t3) :rule subproof)
(step s3 (cl t3)

:premises (s1 s2) :rule resolution)

9

Alethe Grammar
⟨proof⟩ ≔ ⟨proof_command⟩∗

⟨proof_command⟩ ≔ (assume ⟨symbol⟩ ⟨proof_term⟩)
| (step ⟨symbol⟩ ⟨clause⟩ :rule ⟨symbol⟩

⟨premises_annotation⟩?

⟨context_annotation⟩? ⟨attribute⟩∗)
| (anchor :step ⟨symbol⟩

⟨args_annotation⟩? ⟨attribute⟩∗)
| (define-fun ⟨function_def⟩)

⟨clause⟩ ≔ (cl ⟨proof_term⟩∗)
⟨proof_term⟩ ≔ ⟨term⟩ extended with

(choice (⟨sorted_var⟩) ⟨proof_term⟩)
⟨premises_annotation⟩ ≔ :premises (⟨symbol⟩+)

⟨args_annotation⟩ ≔ :args(⟨step_arg⟩+)
⟨step_arg⟩ ≔ ⟨symbol⟩|(⟨symbol⟩ ⟨proof_term⟩)

⟨context_annotation⟩ ≔ :args(⟨context_assignment⟩+)
⟨context_assignment⟩ ≔ (⟨sorted_var⟩)

| (:= ⟨symbol⟩ ⟨proof_term⟩)

10

Alethe Proofs: ReasoningWith Binders

refl𝑦, 𝑥 ↦ 𝑦 ⊳ 𝑥 = 𝑦 cong
𝑦, 𝑥 ↦ 𝑦 ⊳ 𝑓(𝑥) = 𝑓(𝑦)

bind∀𝑥. 𝑓(𝑥) = ∀𝑦. 𝑓(𝑦)

⊢ ∀𝑥. 𝑓(𝑥) = ∀𝑦. 𝑓(𝑦)

(anchor :step s2 :args ((:= (x S) y)))
(step s2.s1 (cl (= x y)) :rule refl)
(step s2.s2 (cl (= (f x) (f y)))

:rule cong)
(step s2 (cl (= (forall ((x S)) (f x))

(forall ((y S)) (f y)))
:rule bind)

11

Contexts

Definition
Context A possibly empty list 𝑐1, … , 𝑐𝑙.
Each element is either a variable-term tuple denoted 𝑥𝑖 ↦ 𝑡𝑖 ora variable 𝑥𝑖.

• The first case is a mapping.
• The second case shadows the mapping for 𝑥𝑖.
• Every context Γ induces a capture-avoiding substitution subst(Γ).

1. if Γ = 𝜖, then subst(Γ) is identity.
2. subst(𝑐1, … , 𝑐𝑛−1, 𝑥𝑛 ↦ 𝑡𝑛) = subst(𝑐1, … , 𝑐𝑛−1) ∘ {𝑥𝑛 ↦ 𝑡𝑛}.
3. subst(𝑐1, … , 𝑐𝑛−1, 𝑥𝑛) is subst(𝑐1, … , 𝑐𝑛−1), but 𝑥𝑛 maps to 𝑥𝑛.

12

Contexts

Definition
Context A possibly empty list 𝑐1, … , 𝑐𝑙.
Each element is either a variable-term tuple denoted 𝑥𝑖 ↦ 𝑡𝑖 ora variable 𝑥𝑖.

• The first case is a mapping.
• The second case shadows the mapping for 𝑥𝑖.
• Every context Γ induces a capture-avoiding substitution subst(Γ).

1. if Γ = 𝜖, then subst(Γ) is identity.
2. subst(𝑐1, … , 𝑐𝑛−1, 𝑥𝑛 ↦ 𝑡𝑛) = subst(𝑐1, … , 𝑐𝑛−1) ∘ {𝑥𝑛 ↦ 𝑡𝑛}.
3. subst(𝑐1, … , 𝑐𝑛−1, 𝑥𝑛) is subst(𝑐1, … , 𝑐𝑛−1), but 𝑥𝑛 maps to 𝑥𝑛.

12

Contexts

Definition
Context A possibly empty list 𝑐1, … , 𝑐𝑙.
Each element is either a variable-term tuple denoted 𝑥𝑖 ↦ 𝑡𝑖 ora variable 𝑥𝑖.

• The first case is a mapping.
• The second case shadows the mapping for 𝑥𝑖.
• Every context Γ induces a capture-avoiding substitution subst(Γ).

1. if Γ = 𝜖, then subst(Γ) is identity.
2. subst(𝑐1, … , 𝑐𝑛−1, 𝑥𝑛 ↦ 𝑡𝑛) = subst(𝑐1, … , 𝑐𝑛−1) ∘ {𝑥𝑛 ↦ 𝑡𝑛}.
3. subst(𝑐1, … , 𝑐𝑛−1, 𝑥𝑛) is subst(𝑐1, … , 𝑐𝑛−1), but 𝑥𝑛 maps to 𝑥𝑛.

12

ThingsWe DoWith Contexts

subst(Γ)(𝑡) equal to 𝑢 up to 𝛼-eq.
reflΓ ⊳ 𝑡 = 𝑢

𝑦, 𝑥 ↦ 𝑦 ⊳ 𝜑 = 𝜓
bind∀𝑥. 𝜑 = ∀𝑦. 𝜓

𝑥 ↦ 𝜖𝑥. 𝜑 ⊳ 𝜑 = 𝜓
sko_ex∃𝑥. 𝜑 = 𝜓

13

Alethe Grammar
⟨proof⟩ ≔ ⟨proof_command⟩∗

⟨proof_command⟩ ≔ (assume ⟨symbol⟩ ⟨proof_term⟩)
| (step ⟨symbol⟩ ⟨clause⟩ :rule ⟨symbol⟩

⟨premises_annotation⟩?

⟨context_annotation⟩? ⟨attribute⟩∗)
| (anchor :step ⟨symbol⟩

⟨args_annotation⟩? ⟨attribute⟩∗)
| (define-fun ⟨function_def⟩)

⟨clause⟩ ≔ (cl ⟨proof_term⟩∗)
⟨proof_term⟩ ≔ ⟨term⟩ extended with

(choice (⟨sorted_var⟩) ⟨proof_term⟩)
⟨premises_annotation⟩ ≔ :premises (⟨symbol⟩+)

⟨args_annotation⟩ ≔ :args(⟨step_arg⟩+)
⟨step_arg⟩ ≔ ⟨symbol⟩|(⟨symbol⟩ ⟨proof_term⟩)

⟨context_annotation⟩ ≔ :args(⟨context_assignment⟩+)
⟨context_assignment⟩ ≔ (⟨sorted_var⟩)

| (:= ⟨symbol⟩ ⟨proof_term⟩)

14

WhereWe Are Now

Now

You can build things with it!
The language is stable.
The proof rules need polish.

Soon

How to handle rule growth?
Better way for Skolemization and friends?
What about SMT-LIB 3?

15

WhereWe Are Now

Now

You can build things with it!
The language is stable.
The proof rules need polish.

Soon

How to handle rule growth?
Better way for Skolemization and friends?
What about SMT-LIB 3?

15

