The Alethe Proof Format

An Overview

Hans-Jorg Schurr
May 12 2023

Structure

1. Small number of slides.
2. Interactive exploration.

e lonly have slides fort < ,;0cated

What is Alethe?

Aletheis ...
...a format to represent derivations of the empty clause from an
SMT problem.

e Alanguage (think TSTP)
and a collection of proof rules.
e Ongoing work, but there are multiple users!

Catability

e Alethe is a language for machines, but

e when a human runs cat on an Alethe file they
should not be shocked.

Catability

e Alethe is a language for machines, but

e when a human runs cat on an Alethe file they
should not be shocked.

How?
e Follow SMT-LIB ideas.
e Formulas are SMT-LIB formulas + choice.
e Proof-appropriate commands.
® Reuse otherideas, such as annotations.

Some History

A long time ago
® ForveriT: EUF, LIRA, QF _
® First: Ad-hoc %7 2006
e Later: Redesigned 57’ 2011
e Syntax changed over time

Soon after
® SMTCoq one of the first users
e Verified checker 37" 2011

® Base for automation in Coq
2017, now

Some History

A long time ago
® ForveriT: EUF, LIRA, QF _
® First: Ad-hoc %7 2006
e Later: Redesigned 57’ 2011
e Syntax changed over time

Soon after
® SMTCoq one of the first users
e Verified checker 57 2011

® Base for automation in Coq
2017, now

Recently

e Support for reasoning with bound
variables 47 2017, 2020

® |sabelle/HOL integration
7 2021, now

* cvc5 support 7' 2021
e Proof checker 47 2022
*» Proofonomicon

Now!
M Speculative Specification
=™ It’s now Alethe!

Users

Producers
e veriT
+ Stable
+ Well documented
Exposes internals
Limited

® cvch

+ Powerful

+ Principled
Undocumented
o Rewrites

Users

Consumers
Producers e Carcara

e veriT ® Proof checker
+ Stable and elaborator
+ Well documented ® Fast
- Exposes internals ® Good feature coverage
- Limited ® |sabelle/HOL

® cvch ® Alethe powered tactic
+ Powerful ® excelent veriT support
+ Principled ® ongoing for cvc5
- Undocumented ® SMTCoq
0 Rewrites ® translates to an internal format

® ongoing

Resources

Materialon https://schurr.io

Documentation -
https://gitlab.uliege.be/verit/alethe

Checker -
https://github.com/ufmg-smite/carcara

veriT-http://www.verit-solver.org
cve5-https://cvc5.github.io

https://schurr.io
https://gitlab.uliege.be/verit/alethe
https://github.com/ufmg-smite/carcara
http://www.verit-solver.org
https://cvc5.github.io

Alethe Proofs: Basic Structure

hf S resolution
1

ti,to F L

(assume a0® t1)
(assume al t2)
(step s1 (cl t3)
:premises (a1l) :rule rulel)

(step s20 (cl (not t1))

:premises (s19) :rule rule2)
(step s21 (cl)

:premises (a0 s20) :rule resolution)

Alethe Proofs: Subproofs With Assumptions

t]
bt
E Wsubproof
resolution
t3

i, s

(assume a® t1)
(step s1 (cl t2)
:premises (a0) :rule rulel)
(anchor :step s2)
(assume s2.a1l t2)

(step s2.s10 (cl t3)
:premises (s2.s9) :rule rule2)
(step s2 (cl (not t2) t3) :rule subproof)
(step s3 (cl t3)
:premises (s1 s2) :rule resolution)

Alethe Proofs: Subproofs With Assumptions

(assume a® t1)
(step s1 (cl t2)
:premises (a0) :rule rulel)

[t]
t t
R L B subproof
t2 _|t2’ t3 racolutl
t3

(anchor :step s2)
(assume s2.al t2)

(step s2.s10 (cl t3)
:premises (s2.s9) :rule rule2)
(step s2 (cl (not t2) t3) :rule subproof)

(step s3 (cl t3)
:premises (s1 s2) :rule resolution)

Alethe Grammar

(proof)
(proof_command)

(clause)
(proof_term)

(premises_annotation)
(args_annotation)
(step_arg)
(context_annotation)
(context_assignment)

(proof_command)*

(assume (symbol) (proof_term))

(step (symbol) (clause) :rule (symbol)
(premises_annotation)?
(context_annotation)? (attribute)*)

(anchor :step (symbol)
(args_annotation)? (attribute)*)

(define-fun (function_def))

(cl (proof_term)*)

(term) extended with

(choice ((sorted_var)) (proof_term))

:premises ((symbol)*)

:args ((step_arg)™)

(symbol)|((symbol) (proof_term))

:args ((context_assignment)*)

((sorted_var))

(:=(symbol) (proof_term))

10

Alethe Proofs: Reasoning With Binders

(anchor :step s2 :args ((:= (x S) vy)))
— refl (step s2.s1 (cl (= x y)) :rule refl)
y,x=yb r=Yy cong (step s2.52 (cl (= (f x) (f y)))
Y, r =y > f(:C) = f(y) bind :rule cong)
\v’xf(:c) — v f(y) INd(step s2 (cl (= (forall ((x S)) (f x))

(forall ((y S)) (f y)))
:rule bind)

11

Contexts

Definition
Context A possibly empty list ¢y, ..., ¢;.
Each element is either a variable-term tuple denoted z, — ¢, ora variable z;,.

12

Contexts

Definition

Context A possibly empty list ¢y, ..., ¢;.

Each element is either a variable-term tuple denoted z, — ¢, ora variable z;,.
® The first case is a mapping.
® The second case shadows the mapping for z,.
e Every context I" induces a capture-avoiding substitution subst ().

12

Contexts

Definition
Context A possibly empty list ¢y, ..., ¢;.

Each element is either a variable-term tuple denoted z, — ¢, ora variable z;,.

® The first case is a mapping.

® The second case shadows the mapping for z,.

e Every context I" induces a capture-avoiding substitution subst ().
1. if ' = ¢, then subst(T") is identity.

2. subst(cy,...,¢,_1, T, H>t,) =subst(cy,...,c, 1) o{x, —1t,}
3. subst(cq,...,¢,_q1,x,)issubst(cy,...,c, 1),butz, mapstox,,.

12

Things We Do With Contexts

subst(I')(t) equal to u up to a-eq.

I'> t=u
y,r=y>p=1 :
Vz.p =Vy. bind

T Er.o > =1
Jx.p =1

sko_ex

refl

13

Alethe Grammar

(proof)
(proof_command)

(clause)
(proof_term)

(premises_annotation)
(args_annotation)
(step_arg)
(context_annotation)
(context_assignment)

(proof_command)*

(assume (symbol) (proof_term))

(step (symbol) (clause) : rule(symbol)
(premises_ annotat10n>
(context_annotation)’ (attribute)*)

(anchor :step (symbol)
(args_annotation)? (attribute)*)

(define-fun (function_def))

(cl (proof_term)*)

(term) extended with

(choice ((sorted_var)) (proof_term))

:premises ((symbol)*)

:args ((step_arg)*)

(symbol)|((symbol) (proof_term))

:args ((context_assignment)*)

((sorted_var))

(:=(symbol) (proof_term))

14

Where We Are Now

Now
% You can build things with it!
@ Thelanguage is stable.

¢ The proof rules need polish.

15

Where We Are Now

Now

% You can build things with it!
& The language is stable.
¢ The proof rules need polish.

Soon

~/ How to handle rule growth?

§7 Better way for Skolemization and friends?
‘9 What about SMT-LIB 3?

15

