
A Catalog of SMT-LIB Benchmarks1

Hans-Jörg Schurr #

University of Iowa, Iowa, USA
Mathias Preiner #

Stanford University, Stanford, USA
2

Aina Niemetz #

Stanford University, Stanford, USA
Clark Barrett #

Stanford University, Stanford, USA
3

Pascal Fontaine #

Université de Liège, Liege, BE
Cesare Tinelli #

University of Iowa, Iowa, USA
4

5

6

Abstract7

The SMT-LIB benchmark library is a large set of benchmarks for SMT solvers. It is used by8

the annual SMT competition to evaluate SMT solvers, and by researchers to study novel solving9

techniques. Effective use of the benchmark library often requires access to benchmark metadata,10

such as as the number of user defined symbols. We present a comprehensive metadata catalog for the11

SMT-LIB benchmark library. It combines features extracted from the SMT-LIB benchmarks with12

the results of all past SMT-COMP competitions since 2005. The catalog is implemented as a SQLite13

database. This allows users to use standard industry tools to perform queries, and the database14

to be distributed as a single file. Since SQLite libraries are available for all major programming15

languages, it is also easy to integrate the catalog with existing benchmarking tools. In the future,16

we will distribute the catalog with each annual release of the SMT-LIB library.17

2012 ACM Subject Classification Theory of computation → Automated reasoning; Information18

systems → Information integration19

Keywords and phrases SMT, benchmarks, data integration, SQLite, database, automated reasoning20

Category Draft21

Acknowledgements We thank the many contributors of SMT-LIB benchmarks, and the organizers22

of the SMT competition. Geoff Sutcliffe provided valuable insights into benchmark difficulty ratings.23

24

1 Introduction25

The SMT-LIB [3] initiative is an ongoing international initiative created in 2003 whose goal26

is to facilitate research and development in Satisfiability Modulo Theories (SMT). Part of27

this initiative is the development of the SMT-LIB language [4] for specifying SMT problems28

in text format and the collection and maintenance of a large library of benchmarks problems29

written in that format. The benchmark library, currently maintained by the authors of this30

paper, is curated and continually extended with contributions from the SMT community31

and is published online as yearly releases. The library is used by developers of SMT solvers32

as well as by the annual SMT solver competition SMT-COMP [9].33

The 2024 release of the library, the latest release to date, contains a total of 482,96134

benchmarks divided into two categories: non-incremental benchmarks (440,874), which35

contain single satisfiability queries problems, and incremental benchmarks (42,087), which36

involve multiple satisfiable queries. Benchmarks are usually contributed to the library by37

users and developers of SMT solvers. During the submission process, benchmarks are checked38

for compliance with the SMT-LIB language and adherence to simple formatting rules.39

While benchmarks are categorized by logic, essentially labeling the family of symbols40

used in the file, in the past there used to be no further categorization or curation. However,41

mailto:hansjoerg-schurr@uiowa.edu
https://orcid.org/0000-0002-0829-5056
mailto:preiner@cs.stanford.edu
https://orcid.org/0000-0002-7142-6258
mailto:niemetz@cs.stanford.edu
https://orcid.org/0000-0003-2600-5283
mailto:barrett@cs.stanford.edu
https://orcid.org/0000-0002-9522-3084
mailto:Pascal.Fontaine@uliege.be
https://orcid.org/0000-0003-4700-6031
mailto:cesare-tinelli@uiowa.edu
https://orcid.org/0000-0002-6726-775

2 A Catalog of SMT-LIB Benchmarks

SMT solver users and developers often rely on more advanced metadata. For instance, when42

evaluating the performance of a procedure or solver configuration that targets a specific43

fragment of a theory, it may be desirable to only include benchmarks that contain only44

symbols of that fragment. Other examples are identifying benchmarks that are uniquely45

solved by a solver configuration, or not solved by any known configuration—both corner cases46

that may serve as important starting point for developing solving procedures. Metadata can47

also be used for solving itself, e.g., to guide automatic selection of solving strategies [12].48

It is common practice to collect such metadata on demand, via ad-hoc scripts. This is49

not only error-prone but also inconvenient. We present a benchmark catalog that integrates50

benchmark metadata, results from all past SMT competitions and hand-curated data. The51

metadata provides context to select and understand benchmarks, and the competition results52

track the historical performance of SMT solvers. We intend to release an updated catalog53

file as part of the yearly benchmark library release.54

The catalog is published as an SQLite database, which allows for easy integration with55

existing benchmarking and testing systems. SQLite databases are stored as single files,56

making them easy to share. Moreover, libraries for interacting with SQLite databases exist57

for all major programming languages. For ease of maintenance and expansion of the catalog,58

we implemented the data integration pipeline as flexible Python scripts. For benchmark59

metadata extraction, we developed an optimized standalone tool called Klammerhammer.60

We further provide a simple web frontend for navigating benchmark metadata.61

Section 2 describes how individual benchmarks are represented in the database and gives62

examples for using the catalog. In Section 3, we describe our data integration pipeline. There63

are two sources of data: the benchmark metadata (Section 3.1), and the outcome of SMT64

evaluations (Section 3.2). Finally, we discuss future directions for the catalog, and how it65

compares to related work in Section 4.66

2 The Structure of the Catalog67

The database schema of the catalog is given in Figure 1. The database tables of the schema68

fall into three categories, distinguished visually. The three tables highlighted with form the69

core of the database and list benchmarks and the queries contained within the benchmarks;70

the tables marked by store static metadata, such as symbol frequencies; and the tables71

shown as boxes store the results of large scale evaluations.72

Every row of the Benchmarks table represents one SMT-LIB benchmark, and each73

benchmark belongs to exactly one family stored in the Families table. This classification74

follows the folder structure of the benchmark library. There, each benchmark is uniquely75

identified by its file path, for example:76

non-incremental︸ ︷︷ ︸
isIncremental

/ UFNIA︸ ︷︷ ︸
logic

/

family︷ ︸︸ ︷
2019︸ ︷︷ ︸
date

- Preiner︸ ︷︷ ︸
name

/ partial/t3_rw617.smt2︸ ︷︷ ︸
name

77

The family of the benchmark is the third component of the file path. A benchmark family78

usually shares common properties. Benchmarks in a family often originate from the same79

application, or are generated by the same tool. Note that a family may contain benchmarks80

from several logics, and may contain both incremental and non-incremental benchmarks.81

The Families table models this accurately. The date (either a full date, or just a year)82

is chosen by the submitter, and is usually the date on which the benchmark family was83

generated. Some benchmark families are not associated with a date for historical reasons.84

H. Schurr, M. Preiner, A. Niemetz, C. Barrett, P. Fontaine, and C. Tinelli 3

id INT
benchmark INT
idx INT
normalizedSize INT
compressedSize INT
assertsCount INT
status TEXT
inferredStatus TEXT
... ...

id INT
name TEXT
family INT
logic TEXT
isIncremental BOOL
size INT
compressedSize INT
generatedBy TEXT
passesDolmen BOOL
queryCount INT
license INT
... ...

id INT
name TEXT
folderName TEXT
date DATE
firstOccurrence DATE
benchmarkCount INT

logic TEXT
quantifierFree BOOL
arrays BOOL
... ...

id INT
name TEXT
link TEXT
spdxIdentifier TEXT

symbol INT
query INT
count INT

id INT
name TEXT

id INT
benchmark INT
solverVariant INT

id INT
name TEXT
link TEXT

id INT
fullName TEXT
solver INT
evaluation INT

id INT
name TEXT
date DATE
link TEXT

id INT
query INT
solverVariant INT
cpuTime REAL
wallclockTime REAL
status TEXT
evaluation INT

id INT
query INT
evaluation INT
rating REAL
consideredSolvers INT
successfulSolvers INT

BenchmarksQueries Families

Symbols

TargetSolvers

SolversSolverVariants

SymbolCounts

Licenses

Evaluations

Results

Ratings

Logics

Figure 1 Database schema of the catalog with some fields omitted.

Field firstOccurence records the date of the first competition that used a benchmark from85

the family. Overall, there are currently 273 families.86

The name of the benchmark corresponds to the tail of the file path after the family. The87

associated logic is a string that indicates the SMT theories referred to by the benchmark.88

Finally, the topmost folder indicates whether the benchmark is incremental or not. Incre-89

mental benchmarks contain more than one satisfiability query expressed with a check-sat90

command. The command instructs the solver to determine the satisfiability of a set of91

formulas previously asserted with one or more assert commands. Asserted formulas are92

stored on a stack, which can be manipulated using the push and pop commands.93

Each check-sat command corresponds to a row in the Queries table. The idx field of94

the Queries table is the index of the query in the benchmark. For example, if idx is 3, the95

query corresponds to the third check-sat call. Overall, there are 34,507,767 queries. Some96

benchmarks individually contain thousands of queries. The benchmark with the highest97

number of queries has 2,630,828 of them.98

Perusing the Catalog99

The SMT-LIB benchmark library is released on the open-access repository Zenodo [10,11].100

Starting 2025, the catalog will be an additional Zenodo artifact consisting of a compressed101

archive with the SQLite database and a number of helper files. Since this archive is large102

(currently, around 1.5 GiB, 5.4 GiB uncompressed), we expect users to download the database103

and perform queries locally. To reduce the file size, the database has no query indexes.104

However, the archive contains a script that generates default indexes.105

4 A Catalog of SMT-LIB Benchmarks

The simplest way to use the database is to use the SQLite command line tool to perform106

queries. Alternatively, language bindings, such as Python’s sqlite3 module, and graphical107

tools, such as the DB Browser for SQLite, can be used. For example, the following query108

returns the number of non-incremental benchmarks containing at least 100 bvxor calls: 7130.109

110
SELECT COUNT(Benchmarks .id) FROM Benchmarks111

JOIN Queries ON Queries . benchmark = Benchmarks .id112

JOIN SymbolCounts ON SymbolCounts .query = Queries .id113

JOIN Symbols ON Symbols .id = SymbolCounts . symbol114

WHERE isIncremental = False AND Symbols .name = ’bvxor ’115

AND SymbolCounts .count > 100;116117

The following query returns 6,525, which is the number of benchmarks solved by the118

SONOLAR solver, but not by the Abziz solver at SMT-COMP 2014 (with id 10).119

120
WITH Eval AS (121

SELECT Queries .id , Solvers .name AS sn FROM Queries122

JOIN Results ON Results .query = Queries .id123

JOIN SolverVariants ON SolverVariants .id = Results . solverVariant124

JOIN Solvers ON Solvers .id = SolverVariants . solver125

WHERE Results . evaluation = 10 AND Results . status != ’unknown ’)126

SELECT COUNT(DISTINCT ev.id) FROM Eval AS ev127

WHERE (sn == ’SONOLAR ’) AND128

NOT EXISTS (SELECT * FROM Eval WHERE sn == "Abziz " AND Ev.id == id)129130

We also provide a simple demonstration webapp that can be used to quickly inspect the131

data associated with a benchmark. The webapp is part of the release and can be started132

locally using Docker. smtlib.schurr.io (username: smtlib, password: notzenodo) for133

reviewing. The webapp allows users to search for benchmarks by logic, name, or family.134

Once a benchmark is found, it shows the benchmark and metadata. It also lists the solvers135

that attempted to solve the benchmark at a competition, the years of the competition such136

an attempt was made, and the solvers that succeeded. Every benchmark is associated with137

a static URL in the webapp based on its id. For example, the benchmark in Section 3.1 is138

available at http://localhost:8000/benchmark/106394.139

Database Schema Static Data · · ·

klhm Dolmen

klhm Dolmen

Evaluation Derived Data

prepopulate.py

addbenchmark.py

addbenchmark.py

postprocess.py

Figure 2 The data integration pipeline.

3 Data Integration140

The catalog data is collected from two main sources: the individual benchmark files and the141

SMT competition data. The data collection from these sources and its integration into the142

catalog is implemented as a modular and easy-to-extend pipeline, written in Python (available143

at github.com/SMT-LIB/SMT-LIB-db). Figure 2 depicts the workflow of the pipeline. It is144

divided into three stages, each implemented as a Python script. In the first stage, script145

https://sqlitebrowser.org/
https://smtlib.schurr.io
https://github.com/SMT-LIB/SMT-LIB-db

H. Schurr, M. Preiner, A. Niemetz, C. Barrett, P. Fontaine, and C. Tinelli 5

prepopulate.py creates the database scheme, and initializes the database with static data,146

such as the list of licenses used in SMT-LIB benchmarks, SMT-LIB logics, and the names of147

SMT solver that participated in SMT-COMP. In the second stage, script addbenchmark.py148

is used to parse the individual benchmark files to extract the benchmark metadata. Since this149

stage is the most time consuming, it can be run in parallel to speed-up the data collection. As150

final step, script postprocess.py integrates the SMT-COMP results data into the database151

and computes and stores additional data derived from these results.152

3.1 Integrating Benchmark Metadata153

The metadata tables () store data associated with benchmarks or queries. Each154

benchmark includes a header section that stores metadata (Section 3.1). The header uses the155

set-info command to declare metadata fields. This command allows to specify a :source156

field, which is populated with information about the source of the benchmark, containing157

fields as a structured string. Most of these fields relate to the entire benchmark. Hence, most158

metadata fields are mapped directly to a corresponding field in the Benchmarks table. The159

entry for the example benchmark would store Mathias Preiner in the generatedBy field.160

The :status field relates to a specific query. It indicates whether the next query is known161

to be satisfiable or unsatisfiable. This is stored in the status field in the Queries table.162

Field license associates one license to the benchmark, currently among a list of eleven, in163

the manually curated Licenses table. The license is usually identified by a short code, such as164

GPL, or by a link. However, some benchmarks (e.g., in the CPAchecker_kInduction-SoSy_Lab165

family) contain the entire license text. We shorten this to a license code (“CMU SoSy Lab” in166

this case). The Target solver field lists the solvers targeted by the benchmark creator. We167

store this information in the TargetSolvers table that maps solver variants to benchmarks.168

Solver variants are also used for SMT competition results (Section 3.2).169

A key data point about an SMT query is which theory symbols and SMT-LIB features170

are used, and how often they occur in a benchmark. While these counts are not directly171

available in the benchmark header, they can be computed by scanning the benchmark. We172

distinguish two different categories of counters: one for SMT-LIB commands, such as assert173

and define-const which assert formulas and define constants, and one for predefined theory174

symbols that appear in formulas. The first category is small and fixed, while the second175

category is large and grows as new theories are added to SMT-LIB. Counts from the first176

category are therefore fields of the Queries table, e.g., assertsCount gives the number of177

assert commands used by a query. For the second category, we use the Symbols and178

SymbolCounts tables. The former lists all theory symbols we consider. We extracted this179

(set -info :smt -lib - version 2.6) (set -logic UFNIA)
(set -info : source |

Generated by: Mathias Preiner
Generated on: 2019 -03 -22
Application : Verifying bit - vector rewrite rule candidates .
Target solver : CVC4 , Z3 , Vampire |)

(set -info : license "https :// creativecommons .org/ licenses /by /4.0/")
(set -info : category " crafted ")
(assert ...) ...
(set -info : status unknown) (check -sat) (exit)

Listing 1 Abridged content of the SMT-LIB file from Section 2.

6 A Catalog of SMT-LIB Benchmarks

table from the SMT-LIB parser of the cvc5 SMT solver [1]. The SymbolCounts has one180

entry for each symbol that appears at least once in a query. To simplify the scanner, we do181

not distinguish theory symbols from user declared symbols. Hence, the SymbolCounts182

table may contain entries for symbols that are not part of the benchmark logic.183

The normalizedSize field of the Queries table is the a size of a query in bytes. A query is184

identified with each check-sat command and encompasses all the commands that assert in185

the stack information relevant to that check-sat command. Its size is computed by correctly186

tracking the push and pop commands in the benchmark. The compressedSize field is the size187

of the query after compression with the zstd algorithm. This field measures the problem size188

and is independent of syntactic factors such as the length of symbol names. The size and189

compressedSize fields of the Benchmarks table are the sizes of the entire benchmark.190

Finally, the passesDolmen field of the Benchmark table records whether Dolmen, the191

reference parser and type checker for SMT-LIB [5], reports no error for the benchmark.192

Klammerhammer. To extract the metadata quickly we use Klammerhammer, a standalone193

tool we developed, that performs a simple scan of the benchmark. It stores symbol counts194

on a stack. SMT-LIB push commands push a copy of the counts onto the stack, while pop195

commands remove the topmost entry. Whenever a check-sat command is encountered, the196

tool prints the current counts as JSON data. After scanning the entire benchmark, the197

tool prints the metadata fields for the entries in the Benchmarks table. To compute the198

query size we also store the byte offset of push and pop calls on the stack. Klammerhammer199

is implemented in the low level programming language Zig, and uses the zstd library to200

compute the compressed sizes.201

3.2 Integrating SMT-COMP Results202

The catalog not only stores metadata of individual benchmarks in the SMT-LIB library, but203

also combines it with the historical data of all SMT competitions. This allows users of the204

catalog to get answers for questions like “Can solver X solve the benchmark?” or “How205

difficult is this benchmark?”. The yearly organized SMT competition [9] publishes the raw206

competition data each year. To answer these questions one must evaluate SMT solvers on207

the benchmarks. Instead of performing our own evaluations, we use the results of the yearly208

SMT competition [9]. At that competition, solvers can compete in multiple tracks. For209

instance single query (resp. incremental) track tasks solvers with solving non-incremental210

(resp. incremental) benchmarks. To record historical developments, we also integrate past211

SMT competitions. Integrating multiple competition years also allows us to cover more212

benchmarks, since recent competitions use only a random subset of the benchmarks from213

the SMT-LIB library because of its large size. Unfortunately, competitions before 2024214

only archived summary results of the incremental track, and not a solver’s answers for each215

individual query.216

Each competition year is a row in the Evaluations table. This row stores some basic217

data about the competition, such as a link to its website. The solvers that participate in an218

evaluation are collected in the Solvers and SolverVariants tables. A solver variant is a219

concrete version of a solver that participated in an evaluation (or is mentioned as a target220

solver in a benchmark). Since solvers have different versioning schemes, we do not attempt221

to record solver versions. Both the Solvers and the SolverVariants table are manually222

curated. Overall, we record 82 solvers and 484 variants.223

The Results table connects queries and solvers for each evaluation. The status field is224

sat, unsat, or unknown, depending on the answer of the solver. Furthermore, we record225

H. Schurr, M. Preiner, A. Niemetz, C. Barrett, P. Fontaine, and C. Tinelli 7

Results Benchmarks

Year Format Missing Total Percent Missing Total Percent

2005 HTML 10 3,299 0.30% 1 355 0.28%
2006 " 158 7,067 2.24% 58 1,127 5.15%
2007 SQL 684 12,370 5.53% 149 2,297 6.49%
2008 " 933 16,110 5.79% 253 2,993 8.45%
2009 " 471 14,948 3.15% 232 3,711 6.25%
2010 " 684 12,898 5.30% 208 3,731 5.57%
2011 " 380 18,588 2.04% 88 3,779 2.33%
2012 " 496 8,020 6.18% 90 1,557 5.78%
2013 CSV1 1,336 1,663,478 0.08% 85 95,491 0.09%
2014 CSV2 38,149 347,147 10.99% 9 096 67,426 13.49%
2015 " 68,670 980,235 7.01% 9 254 154,238 6.00%
2016 " 68,752 1,003,075 6.85% 9 273 154,424 6.00%
2017 " 416 1,186,056 0.04% 114 238,758 0.05%
2018 JSON 29,772 1,388,191 2.14% 29 472 333,241 8.84%
2019 " 91 730,685 0.01% 13 64,154 0.02%
2020 " 878 563,052 0.16% 175 89,910 0.19%
2021 " 0 772,681 0.00% 0 99,254 0.00%
2022 " 0 658,873 0.00% 0 93,791 0.00%
2023 " 0 740,591 0.00% 0 111,285 0.00%
2024 " 0 491,221 0.00% 0 123,486 0.00%

Table 1 Competition results that could not be assigned to benchmarks and data formats used.

both the wallclock time and the CPU time. However, not all competitions recorded both. A226

major challenge is that the folder structure of the benchmark library changed over time. For227

example, the logic of misclassified benchmarks was changed. Benchmarks were also removed228

if they were found not to comply with the SMT-LIB standard. To address this we search229

benchmarks heuristically in multiple steps. First we only use the name field, since this seldom230

changes. If this returns an unique benchmark, we use that benchmark. Otherwise, we add231

the family to the search, and finally the logic. If we are unable to uniquely determine the232

benchmark using this method, we discard the result. Our goal is not to record the entire233

evaluation, but collect the results related to benchmarks in the current release. Often the234

discarded results correspond to cleanup of the SMT-LIB benchmark library. For example,235

from 2014 to 2016 the AProVE family contained duplicate benchmarks, and in 2018 the236

missing benchmark are in the QF_SLIA logic that was experimental that year.237

Table 1 lists the competition years and the missing results. The second column shows238

the file format used. The first two competitions are available as HTML websites. From 2007239

until 2012 the competition used on the SMTExec platform [2]. Since this platform is no240

longer online, the results for these years are not publicly available. We used an archived241

backup of the SMTExec database to integrate those years and we are currently working on242

restoring the public results. The SMT Evaluation in 2013 [6] and the SMT competitions243

between 2014 to 2017 use a very similar CSV format with slightly different column names.244

Since 2018 the competition provides the data as a JSON file.245

We compute derived fields from the evaluation results. The firstOccurence field of the246

Families table is the date of the first evaluation where any benchmark of the family was247

used. This is useful to for benchmarks without metadata header or date in the file path. The248

inferredStatus field is a status (sat or unsat), if at a single evaluation two distinct solvers249

agreed on that status, and there was no disagreement by a third solver. Hence, this field250

allows users to know the likely status of a query if no status is given in the benchmark.251

Finally, we compute a difficulty rating for each query at each evaluation. This rating252

is the fraction of solvers that solved a benchmark over the solvers that attempted it:253

8 A Catalog of SMT-LIB Benchmarks

successfulSolvers/consideredSolvers. We consider a solver if any of its variants responded to254

any benchmark in the same logic. This excludes solvers that do not support the benchmark255

logic. A solver is successful if any of its variants gave a sat/unsat answer that did not256

contradict the status or inferredStatus. This rating is inspired by TPTP [14], a benchmark257

library for automated theorem provers. Our calculation, however, is slightly different. TPTP258

removes from the computation the solvers that solve only a strict subset of queries solved by259

another solver. We decided to keep such solvers, because a superseded solver represents a260

serious research effort, and its success or failure to solve a query is evidence of the difficulty261

of that query. Furthermore, one motivation to remove superseded solvers from the count262

is that the weaker solver often is a specialized variant of a stronger solver. Instead, our263

computation combines the variants into a single virtual solver.264

4 Conclusion265

Benchmark libraries are common in the automated reasoning and theorem proving communi-266

ties. Among those, the TPTP library [13] is close to SMT-LIB, but it targets theorem provers267

instead of SMT solvers. TPTP problems store metadata in their header, including syntactic268

features similar to our SymbolCounts table. The metadata header also contains a difficulty269

rating that inspired our rating. Instead of a standalone database, TPTP provides tools to270

search the library for benchmarks with specific characteristics. This is possible, because271

TPTP contains fewer benchmarks (25,775 in the 9.0.0 release) due to careful curation.272

The Global Benchmark Database [7] is a database of SAT benchmarks and their metatdata.273

In contrast to our work, this database does not use a standard SQLite database, but a274

custom data model and language. Benchmarks can appear in different contexts with different275

metadata fields. For example, the cnf context represents benchmark in conjunctive normal276

form, and contains fields such as the number of clauses.277

SMTQuery [8] is a SMT benchmark analysis tool focused on the theory of strings. It uses278

a custom, SQL-like, language. The focus on strings and the custom implementation allows279

SMTQuery to search for metadata that goes beyond symbol frequency. For example, it is280

possible to search for benchmarks with word equations that have a specific shape. Symbol281

frequency is also used for machine learning-based SMT solver selection [12].282

As future work, we will release an updated database file together with the annual283

benchmark library release. These releases will also provide an opportunity to add metadata284

requested by the community. A large change will be the transition to the upcoming Version285

3 of the SMT-LIB language. Since this is a major change to the language, it will require286

updates to the data integration pipeline, and possible changes to the metadata fields, notably287

for the logic identifier, that will evolve to a more flexible notion.288

We are also considering using the database to improve the consistency of the benchmark289

library. For example, using the inferredStatus field to update the status in the benchmark290

would make it easier for solver developers to detect errors. Furthermore, we can also fix291

errors, such as the flipped moth and day in the 20172804-Barrett family, and replace the292

license text with a link in the benchmarks that reproduce the entire text.293

References294

1 Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai295

Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex296

Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar.297

cvc5: A versatile and industrial-strength SMT solver. In Dana Fisman and Grigore Rosu,298

H. Schurr, M. Preiner, A. Niemetz, C. Barrett, P. Fontaine, and C. Tinelli 9

editors, Tools and Algorithms for the Construction and Analysis of Systems - 28th International299

Conference, TACAS 2022, volume 13243 of Lecture Notes in Computer Science, pages 415–442.300

Springer, 2022. doi:10.1007/978-3-030-99524-9_24.301

2 Clark Barrett, Morgan Deters, Leonardo de Moura, Albert Oliveras, and Aaron Stump. 6302

years of smt-comp. volume 50, pages 243–277, Mar 2013. doi:10.1007/s10817-012-9246-5.303

3 Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories Library304

(SMT-LIB). www.SMT-LIB.org, 2016.305

4 Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version 2.7.306

Technical report, Department of Computer Science, The University of Iowa, 2025. Available307

at www.SMT-LIB.org.308

5 Guillaume Bury. Dolmen: A validator for SMT-LIB and much more. In Alexander Nadel and309

Aina Niemetz, editors, Proceedings of the 19th International Workshop on Satisfiability Modulo310

Theories, volume 2908 of CEUR Workshop Proceedings, pages 32–39. CEUR-WS.org, 2021.311

6 David R. Cok, Aaron Stump, and Tjark Weber. The 2013 evaluation of SMT-COMP and312

SMT-LIB. J. Autom. Reason., 55(1):61–90, 2015. doi:10.1007/S10817-015-9328-2.313

7 Markus Iser and Christoph Jabs. Global Benchmark Database. In Supratik Chakraborty and314

Jie-Hong Roland Jiang, editors, 27th International Conference on Theory and Applications315

of Satisfiability Testing (SAT 2024), volume 305 of Leibniz International Proceedings in316

Informatics (LIPIcs), pages 18:1–18:10, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-317

Zentrum für Informatik. doi:10.4230/LIPIcs.SAT.2024.18.318

8 Mitja Kulczynski, Kevin Lotz, Florin Manea, Danny Bøgsted Poulsen, and Paul Sarnighausen-319

Cahn. Smtquery: Analysing smt-lib string benchmarks. In Sidney C. Nogueira and Ciprian320

Teodorov, editors, Formal Methods: Foundations and Applications, pages 22–34, Cham, 2025.321

Springer Nature Switzerland. doi:10.1007/978-3-031-78116-2_2.322

9 SMT-COMP Organizers. The SMT competition. https://smt-comp.github.io, 2025.323

10 Mathias Preiner, Hans-Jörg Schurr, Clark Barrett, Pascal Fontaine, Aina Niemetz, and Cesare324

Tinelli. Smt-lib release 2024 (incremental benchmarks), May 2024. doi:10.5281/zenodo.325

11186591.326

11 Mathias Preiner, Hans-Jörg Schurr, Clark Barrett, Pascal Fontaine, Aina Niemetz, and Cesare327

Tinelli. Smt-lib release 2024 (non-incremental benchmarks), April 2024. doi:10.5281/zenodo.328

11061097.329

12 Joseph Scott, Aina Niemetz, Mathias Preiner, Saeed Nejati, and Vijay Ganesh. Algorithm330

selection for SMT. Int. J. Softw. Tools Technol. Transf., 25(2):219–239, 2023. doi:10.1007/331

S10009-023-00696-0.332

13 Geoff Sutcliffe. The TPTP Problem Library and Associated Infrastructure. From CNF to TH0,333

TPTP v6.4.0. J. Autom. Reason., 59(4):483–502, 2017. doi:10.1007/s10817-017-9407-7.334

14 Geoff Sutcliffe. Stepping stones in the tptp world. In Christoph Benzmüller, Marijn J.H. Heule,335

and Renate A. Schmidt, editors, Proceedings of the 12th International Joint Conference on336

Automated Reasoning, number 14739 in Lecture Notes in Artificial Intelligence, pages 30–50,337

Cham, 2024. Springer Nature Switzerland. doi:10.1007/978-3-031-63498-7_3.338

https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/s10817-012-9246-5
https://doi.org/10.1007/S10817-015-9328-2
https://doi.org/10.4230/LIPIcs.SAT.2024.18
https://doi.org/10.1007/978-3-031-78116-2_2
https://doi.org/10.5281/zenodo.11186591
https://doi.org/10.5281/zenodo.11186591
https://doi.org/10.5281/zenodo.11186591
https://doi.org/10.5281/zenodo.11061097
https://doi.org/10.5281/zenodo.11061097
https://doi.org/10.5281/zenodo.11061097
https://doi.org/10.1007/S10009-023-00696-0
https://doi.org/10.1007/S10009-023-00696-0
https://doi.org/10.1007/S10009-023-00696-0
https://doi.org/10.1007/s10817-017-9407-7
https://doi.org/10.1007/978-3-031-63498-7_3

10 A Catalog of SMT-LIB Benchmarks

A Database Schema339

This database schema is also included in the README file of the catalog release.340

341
-- One row for each benchmark file.342

CREATE TABLE Benchmarks (343

id INTEGER PRIMARY KEY ,344

-- File path after the family (not unique)345

name TEXT NOT NULL ,346

-- Reference to the family of the benchmark347

family INT ,348

logic NVARCHAR (100) NOT NULL , -- Logic string349

-- True if benchmark is in incremental folder350

isIncremental BOOL ,351

-- Size of the benchmark file in bytes352

size INT ,353

-- Size in bytes after compression with zstd354

compressedSize INT ,355

-- Reference to license of the benchmark356

license INT ,357

-- ’Generated on ’ field of the : source header .358

generatedOn DATETTIME ,359

-- ’Generated by ’ field of the : source header .360

generatedBy TEXT ,361

-- ’Generator ’ field of the : source header .362

generator TEXT ,363

-- ’Application ’ field of the : source header .364

application TEXT ,365

-- Text of the : source header after standard fields .366

description TEXT ,367

-- Either ’industrial ’, ’crafted ’, or ’random ’.368

category TEXT ,369

-- The Dolmen checker reports no error.370

passesDolmen BOOL ,371

-- Dolmen with ’--strict =true ’ reports no error.372

passesDolmenStrict BOOL ,373

-- Number of (check -sat) calls in the benchmark .374

queryCount INT NOT NULL ,375

FOREIGN KEY(family) REFERENCES Families (id)376

FOREIGN KEY(license) REFERENCES Licenses (id)377

FOREIGN KEY(logic) REFERENCES Logics (logic)378

);379

-- One row for each (check -sat) call in a benchmark .380

CREATE TABLE Queries (381

id INTEGER PRIMARY KEY ,382

-- Reference to the benchmark this query belongs to.383

benchmark INT ,384

-- Index of the query in the benchmark . Counted from 1.385

idx INT ,386

normalizedSize INT , -- Size in bytes of the query.387

-- Size in bytes of the query compressed with zstd.388

compressedSize INT ,389

assertsCount INT , -- Number of asserts in the query.390

-- Number of ‘declare -fun ‘ commands that declare function391

-- with at least one argument . Otherwise , these392

H. Schurr, M. Preiner, A. Niemetz, C. Barrett, P. Fontaine, and C. Tinelli 11

-- ‘declare -fun ‘ commands are counted as constants .393

declareFunCount INT ,394

-- Number of ‘declare -const ‘ and 0-ary ‘declare -fun ‘.395

declareConstCount INT ,396

declareSortCount INT , -- Num. of ‘declare -sort ‘ commands .397

-- Number of ‘define -fun ‘ commands that expect at least one398

-- argument . Otherwise , these are counted as399

-- ‘constantFunCount ‘.400

defineFunCount INT ,401

-- Number of recursive functions . That is , functions402

-- introduced by ‘define -fun -rec ‘ or ‘define -funs -rec ‘. Each403

-- function in ‘define -funs -rec ‘ is counted individually .404

defineFunRecCount INT ,405

-- Num. of 0-ary ‘define -fun ‘ (i.e., constants).406

constantFunCount INT ,407

defineSortCount INT , -- Num. of ‘define -sort ‘ commands .408

-- Number of datatypes . That is , datatypes introduced by409

-- ‘declare -datatype ‘ or ‘declare -datatypes ‘. Each datatype410

-- in ‘declare -datatypes ‘ is counted individually .411

declareDatatypeCount INT ,412

-- Maximum of "open parenthesis " of any term in this query.413

-- For example , ‘(a (b (c d) (e (f g)))) ‘ has a term depth of414

-- 4. See the description of ‘symbolCounts ‘ for the lists of415

-- terms considere .416

maxTermDepth INT ,417

-- Status of the query as declared in the benchmark .418

status TEXT ,419

-- Status derived from evaluation results .420

inferredStatus TEXT ,421

FOREIGN KEY(benchmark) REFERENCES Benchmarks (id)422

);423

-- Represents a family of benchmarks . Usually , all benchmarks in a424

-- family are submitted together . A family can contain benchmarks425

-- from different logics , and even incremental and426

-- non - incremental benchmarks .427

CREATE TABLE Families (428

id INTEGER PRIMARY KEY ,429

name NVARCHAR (100) NOT NULL , -- Name of the family .430

-- Full name of the folder , including the date.431

folderName TEXT NOT NULL ,432

-- Family date according to folder name. If only a year is433

-- given , the date is the first of January of that year.434

date DATE ,435

-- Date of the first evaluation where any benchmark of this436

-- family was used.437

firstOccurrence DATE ,438

-- Number of benchmarks in the family .439

benchmarkCount INT NOT NULL ,440

UNIQUE (folderName)441

);442

-- A solver listed as a target solver in the bechnmark header .443

CREATE TABLE TargetSolvers (444

id INTEGER PRIMARY KEY ,445

-- Benchmark with this solver as a target .446

benchmark INTEGER NOT NULL ,447

12 A Catalog of SMT-LIB Benchmarks

-- Solver variant given by the benchmark .448

solverVariant INT NOT NULL ,449

FOREIGN KEY(benchmark) REFERENCES Benchmarks (id),450

FOREIGN KEY(solverVariant) REFERENCES SolverVariants (id)451

);452

CREATE TABLE Licenses (453

id INTEGER PRIMARY KEY ,454

name TEXT , -- Name used for the license in the benchmarks455

link TEXT , -- Link to webpage of the license456

-- License identifier see https :// spdx.org/ licenses /457

spdxIdentifier TEXT458

);459

-- One entry for each logic string currently in use.460

CREATE TABLE Logics (461

logic TEXT PRIMARY KEY , -- Logic string462

-- Theories and features activated by the logic.463

quantifierFree BOOL ,464

arrays BOOL ,465

uninterpretedFunctions BOOL ,466

bitvectors BOOL ,467

floatingPoint BOOL ,468

dataTypes BOOL ,469

strings BOOL ,470

-- If false , only linear arithmetic is allowed .471

nonLinear BOOL ,472

-- If true , only difference logic is allowed .473

difference BOOL ,474

reals BOOL ,475

integers BOOL476

);477

-- This tables list symbols that we count. Most of them are478

-- predefined operators , but we also count quantifiers (eg. ‘forall ‘).479

CREATE TABLE Symbols (480

id INT PRIMARY KEY ,481

name TEXT482

);483

-- The number of occurences of that symbol .484

-- We count occurences in: assert , define -fun , define -fun -rec ,485

-- define -funs -rec , and declare - datatype .486

CREATE TABLE SymbolCounts (487

symbol INT ,488

query INT ,489

count INT NOT NULL ,490

FOREIGN KEY(symbol) REFERENCES Symbols (id)491

FOREIGN KEY(query) REFERENCES Queries (id)492

);493

-- List of solvers that participated in the competition or are494

-- mentioned as target solver . Solvers based on other solvers (such495

-- as the Z3 - based string solvers are listed as their own entries .496

CREATE TABLE Solvers (497

id INTEGER PRIMARY KEY ,498

name TEXT ,499

-- Link to solver webpage or publication .500

link TEXT501

);502

H. Schurr, M. Preiner, A. Niemetz, C. Barrett, P. Fontaine, and C. Tinelli 13

-- Since solvers use different versioning schemes , there is503

-- no proper version table. Instead there is only one tables504

-- that can be used both for versions , and multiple variants505

-- submited to the same competition .506

CREATE TABLE SolverVariants (507

id INTEGER PRIMARY KEY ,508

-- Full string that was used to refer to the variant .509

fullName TEXT ,510

solver INT ,511

-- The evaluation that used that variant . NULL for variants512

-- that are target solvers of benchmarks .513

evaluation INT ,514

FOREIGN KEY(solver) REFERENCES Solvers (id)515

FOREIGN KEY(evaluation) REFERENCES Evaluations (id)516

);517

-- This table lists evaluations . These are usually , but not necessary ,518

-- SMT competitions .519

CREATE TABLE Evaluations (520

id INTEGER PRIMARY KEY ,521

name TEXT ,522

-- Date when results were published (at the SMT workshop).523

date DATE ,524

link TEXT525

);526

-- This table maps queries to solver variants and results .527

-- Both cpu time and wallclock time can be NULL if they are not known.528

-- Time is in seconds .529

CREATE TABLE Results (530

id INTEGER PRIMARY KEY ,531

evaluation INTEGER ,532

query INT ,533

solverVariant INT ,534

cpuTime REAL ,535

wallclockTime REAL ,536

-- sat , unsat , or unknown . Might disagree with known status .537

status TEXT ,538

FOREIGN KEY(evaluation) REFERENCES Evaluations (id)539

FOREIGN KEY(query) REFERENCES Queries (id)540

FOREIGN KEY(solverVariant) REFERENCES SolverVaraiants (id)541

);542

-- Dificulty ratings (see below)543

CREATE TABLE Ratings (544

id INTEGER PRIMARY KEY ,545

query INT ,546

evaluation INT ,547

rating REAL , -- 1 - m/n548

consideredSolvers INT , -- n549

successfulSolvers INT , -- m550

FOREIGN KEY(query) REFERENCES Queries (id)551

FOREIGN KEY(evaluation) REFERENCES Evaluations (id)552

);553554

	1 Introduction
	2 The Structure of the Catalog
	3 Data Integration
	3.1 Integrating Benchmark Metadata
	3.2 Integrating SMT-COMP Results

	4 Conclusion
	A Database Schema

