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Many human pursuits demand precise and correct reasoning.

® Our tool: formal logic.
® |t’s unfeasible to write formal proofs by hand:

Reliability mistakes happen easily
Effort horribly time consuming
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The Sledgehammer Pipeline

lemma f(z +5) = f((1 x5) + )
1. f(zx+5) = f(5+ z)byx_unit
2. z+5=5+zxbycong
3.2+ 5=x+5by+_com
4. T by refl
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SMT Proof Reconstruction Circa 2018

veriT Proofs
e New in 2017: reasoning about binders. [Barbosa, et al. 2017]
® Reconstruction prototype by Fleury for validation. [Barbosa, et al. 2020]
® Philosophy: fine-grained proofs, natural deduction style.

The smt tactic: Z3 only
® From 2009, by Bohme, et al.
e Stable, but bound to a specific Z3 version.
e 73 proofs have a different philosophy (macro rules).

Questions
e Can we make the proofs more rigorous?  Yes: Alethe!
e What can we learn from doing reconstruction?  Lessons for the future.
e |sveriT’s fine-grained proof & quantifier support useful?  Yes: veriT smt!



Alethe Proofs: Basic Structure

(assume a0 t1)

¢ (assume al t2)
2 (step s1 (cl t3)
:premises (al :rule rulel
t3 ises (al) le rulel)
(step s20 (cl (not t1))
t —t :premises (s19) :rule rule2)
1 1 .
Tresolutlon (step s21 (cl )

:premises (a0 s20) :rule resolution)

tty b L



Alethe Proofs: Subproofs With Assumptions

[2,]
to L
— —————subproof
t, —ty,t
Qt#resolution
3
t,

(assume a®  t1)
(step s1 (cl t2)
:premises (a0)
(anchor :step s2)
(assume s2.al t2)

(step  s2.s510 (cl t3)
:premises (s2.s9) :
(step s2 (cl (not t2) t3) :
(step s3 (cl t3)
:premises (s1 s2) :

:rule

rule
rule

rule

rulel)

rule2)
subproof)

resolution)
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Alethe Proofs: Subproofs With Assumptions

resolution

it

(assume a0  t1)
(step s1 (cl t2)

:premises (a0) :rule rulel)

(step s3 (cl t3)
:premises (s1 s2) :rule resolution)
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Alethe Proofs: Reasoning With Binders

(anchor :step s2 :args ((:= (x S) y)))

— refl (step s2.s1 (cl (= x y)) :rule refl)
Tyl TZY T ong (step 52.52 (cl (= (£ x) (F y)))
YL CENI0) e cong
bind (step s2 (cl (= (forall ((x S)) (f x))
Va. f(z) = Vy. f(y) (forall ((y $)) (f y)))
:rule bind)
- va. f(z) = V. f(y)
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Important Hurdles Solved
® Clear term simplifications
® No implicit clause normalizations

e Certificates for linear arithmetic

Other Improvments

e Complete documentation of the format.
¢ Rigorous handling of quantifiers

® No implicit clausification.
® V-instantiation certificate: explicit substitution.

® Proper printing of number constants depending on theory.

A better algorithm for proof pruning.

Clever term sharing.
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Clear Term Simplifications

Before

Now

Before

Now

Can we improve proofs of preprocessing?

Proofs
a single rule combining all simplifications, undocumented

17 rules arranged by operators. Documented as rewrite rules.
e.g. x + 0 — xinsum_simplify.

Reconstruction
automatic proof tactics are necessary, with tweaked timeouts.

directed use of the simplifier parameterized with the rewrite rules.

13
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No Implicit Clause Normalizations

Clauses in conclusions are sometimes simplified, why?

Proofs
Before ——¢ implicitly simplified to ¢ in the proof module
Before clauses with complementary literals simplified to T
Before repeated literals implicitly eliminated
Now patch every proof step, e.g, add step ———¢ V ¢ and a resolution step

Reconstruction
Before special case possible at every step!

rule (if pthen v, else ) = —p V 9,
step (if o then —pelse,) = —p
Now no pollution in rule reconstruction.
step (ifothen—pelse,) = —p V —p
14
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Certificates for Linear Arithmetic

Before
Now

Now

Before
Now
Now

Reconstruction fails on this LA tautology: (2x < 3) = (z < 1) overZ
Why? Strengthening!

Proofs
just a clause of inequalities, no certificate.
strengthening documented.

(2r <3)=(z<1)
Strengthened: (2x <2) = (2 < 1)

certificate: coefficient. Here: % and 1.

Reconstruction
certificate derived again.
reconstruction amounts to calculations.
can abstract nested terms: 2 x (if T then 1 else 0) treated as 2 x .
15
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Evaluating smt

1. Pick an existing theory.

2. Try Sledgehammer on each obligation.

® Did Sledgehammer succeed?

® Which tactic did preplay suggest?

e Preplay failure: there is a proof,
but it’s not usable!

® Also: how long does the tactic run?

Encode Problem

Filtering 1
E cvchs veriT
v
Extract Unsat Core
Preplay T
simp auto smt

Inform User

16



CVC4: Preplay Success Rate

HOL-Lib
(13.6 kGoals

PDE
(1.7 kGoals)

RP
(1.7 kGoals)

Simplex
(2.0 kGoals)

< before
) now
before

now
before
< now
before

now

[ Isabelle tactics

| [ 15 | [0 Z3smt
| | X [0 veriTsmt
" [ Preplay failure
[0.8]
| i
[ Tog)
T
| | | |
50 55 60 65

Proven goals (%)
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CVC4: Preplay Time (smt only)

HOL-Lib <b6f°re
(13.6 kGoals) now

PDE before
(1.7 kGoals)

now

RP before

(1.7 kGoals) now

Simplex <before

(2.0 kGoals) now

|
]
]
]
1]
]
= S
0 o a0 w0 s e 1 s

Time (seconds)
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CVC4: Preplay Time (smt only)

HOL-Lib <b6f°re |
(13.6 kGoals) now | l
PDE before
(1.7 kGoals) <
now [F ]
RP before
(1.7 kGoals) how :l:l]
Simplex <before:| O Z3 smt
(2.0 kGoals) [ veriT smt
now
:D:] [ veriT smt (new)
v b b b e b v b b e b1

0 10 20 30 40 50 60 70 80
Time (seconds)
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Reconstruction
® 611 smt-veriT calls in AFP.
e Granular proofs matter.
® Proofsize is critical.

SMT Proofs
¢ Danger of “Proof Rot.”

e Fine-grained proofs can prevent this.
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Conclusion

Reconstruction
® 611 smt-veriT calls in AFP.
e Granular proofs matter.
® Proof size is critical.

SMT Proofs
¢ Danger of “Proof Rot.”

e Fine-grained proofs can prevent this.

Outlook

Alethe
e Support for more features (logics, ...).
® Improve some rules.
® Supportin cvcs.

SMT Proofs
® How to support various solvers?
® How to support various consumers?
e Community collaboration.
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Improving Quantifier Simplification




Stronger SMT Solvers

Part 2: Improving Quantifier Simplification

with Pascal Fontaine
published at FroCoS 2021

Encode Problem

Filtering 1
E cvch veriT
v
Extract Unsat Core
Preplay T
simp auto smt

Inform User
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How SMT Solving Works: The Instantiation Loop

[Instantlatlon Procedure l:
Ground Solver '_

T|meout '
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How SMT Solving Works: The Instantiation Loop

[ I Can easily be mlsled

[Instantlatlon Procedure |-: UNSAT
Ground Solver '_:['__"_]_?EZ[!E_'

[Only skolemize outermost 3]

No full clausification
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An Example

V. P(
(Vz. P
P(c)

8

~/

)
z)

N T

(f(z,c))

(f(z,¢))) = —=P(c)
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An Example

V. P(x) = P(f(x,c))
(Vz. P(z) = P(f(z,¢))) = —P(c)

P(e)
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An Example

Vz.P(x) = P(f(x,c))
(P(s;) = P(f(s;,¢))) = —=P(c)
P(c)
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An Example

Instantiate with 81]

Vz.P(x) = P(f(x,c))

(
(P(s1) = P(f(s1,0))) =
P(c)
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An Example

P(sy) = P(f(sy,0))
(P(s1) = P(f(s1,¢))) = =P(c)
P(c)
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Let’s use Unification

Vz.P(x) = P(f(x,c))
Vy. (V2. P(z) = P(f(2,9))) = ~P(y)
P(c)
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Let’s use Unification

Ve.P(x) — P(f(x,c))

Vy. (P(5,(y) — P(f(s1(y).y))) = —P(y)
P(c)
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Let’s use Unification

Vr.P(x) — P(f(x,c))

Vy. (P(s,(y)) = P(f(s1(y),y))) = —P(y)
P(c)

Unifier: y = ¢, x — s,(c)

29



Let’s use Unification

P(si(c)) = P(f(s1(c),¢))
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Let’s use Unification

P(si(c)) = P(f(s1(c),¢))
(P(sy(c)) = P(f(s;(c),c))) = —=P(c)
P(c)

Unifier: y = ¢, x — s,(c)

Augment Problem: T — —P(¢)

30



The General Rule

Vay,...

7xn' wl

V15 T P[QUY, -

1 Yo- 77b2]

V.. ,xkj.gp[b]o
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The General Rule

3 Yo o]

[b € {T, L} dependent on polarity of v, 1/)2.]
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The General Rule

Q€ {v,3}

first nested quantifier

Vay, .. @, 0 VY, gy, Ty 0[Quy, -

1 Yo- wZ]

‘v’xkl,...,xkj.gob]a

[b € {T, L} dependent on polarity of v, 1/)2.]
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The General Rule

After Skolemization,
¥, and 1, are unified by o.

|

\V/l“l, ey Ly m @[th s Yo ¢2]

VT s Ty - blo

[b € {T, L} dependent on polarity of v, 1/)2.]
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The General Rule

After Skolemization,
¥, and 1, are unified by o.

\V/$1, ey Ly m @[lea s Yo %]

\V/.’,Uk17...,xk.j. b]U

[b € {T, L} dependent on polarity of v, 1/)2.]
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How SMT Solving Works: The Instantiation Loop

[Instantlatlon Procedure l:
Ground Solver '_

T|meout '
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How SMT Solving Works: The Instantiation Loop

[Instantiation Procedure I-: UNSAT
Preprocessor Ground Solver :r_:ri_l';\_eE)[“_: ‘:

Augment problem with
simplified formulas.




How SMT Solving Works: The Instantiation Loop

[ I Can easily be mlsled

[Instantlatlon Procedure I-: | UNSAT |
Preprocessor Ground Solver 'r:rl_l';\_eE)[“_: 1

Augment problem with
simplified formulas.
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Variants

When to use the rule?
1. Standard: remove first quantified subformula.
2. Eager: remove subformulas even if they don’t start with a quantifier.

3. Solitary Variable: remove subformulas with a variable that occurs in no other
subformula.
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Variants

When to use the rule?
1. Standard: remove first quantified subformula.
2. Eager: remove subformulas even if they don’t start with a quantifier.

3. Solitary Variable: remove subformulas with a variable that occurs in no other
subformula.

Deletion: remove the second premise (incomplete).
Can be combined with the three variants above.
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Experimental Results: Baseline Strategies

g ~
Q . @
IS 3 & o
N N Q
G S B RS 3
IS @ N IS & N
N IS N §0 N
vs. Default 9 & ) ) & ) Total
Solved 31690 31927 31772 31928 31733 21405 21823 32151
+237 +82 +238 +43 -10285 -9867 +461
Gained 282 315 285 291 115 255 475
Lost 45 233 47 248 10400 10122 14
vs. Virtual Best
Gained 32633 83 80 85 86 32 76 125
Unique 0 18 0 5 2 6

180 s timeout, 38 717 benchmarks, unsat.
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Experimental Results: Schedules (Only Uninterpreted Functions)
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Experimental Results: Schedules (Only Uninterpreted Functions)

Solved Benchmarks

3400

3200

3000

T T
0 24 60 90 120 150 180

CPU Time

- - - Vampire
——CvC4

————— 24s with simp.
———-180s

—— 180s with simp.
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Conclusion

Quantifier Simplification

® Small things can have big effects.

e We can learn from others.
® The nested structure is tricky.
® |t can be exploited,

but we must be careful.
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Conclusion

Quantifier Simplification

® Small things can have big effects.

e We can learn from others.
® The nested structure is tricky.
® |t can be exploited,

but we must be careful.

Outlook

Quantifier Reasoning

e Simplification as inprocessing:

Simplify after each instantiation round.

® More ideas from superposition.

® Canwe add those in a granular
manner?
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Overall Conclusion

SMT solvers are heterogeneous.
Many knobs to tweak.

Specialized solvers can be very useful.

Practical improvements are hard.

Encode Problem

Filtering 1
E cvehs veriT
v
Extract Unsat Core
Preplay T
simp auto smt

Inform User
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Outlook

Some Speculation
® Here an expert improved SMT solving for an application.
® Could users adapt solvers? Could specialists contribute to SMT solving?
e What would a “white box” SMT solver look like?
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Outlook

Some Speculation
® Here an expert improved SMT solving for an application.
® Could users adapt solvers? Could specialists contribute to SMT solving?
e What would a “white box” SMT solver look like?

Programmable Solver

® Users can adapt the solver to their needs using a DSL.
® Some users already “program” solvers using triggers.
® |dea: DSL based on term rewriting.

Library Solver

® Library Solver: SMT solver as a set of libraries.
e Users pick and choose.

e Potential for tighter integration. i



Thank You!

UNIVERSITE
DE LORRAINE



Implementation

We have to perform many unifiability tests.

® We can use the standard index data structures used by theorem provers.
® Inour case: a non-perfect discrimination tree

and a subsequent unifiability check.

By treating strongly quantified variables as constants we can avoid creating any new
symbols for skolemization!
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Non-Perfect Discrimination Tree

Contains:
Va.P(z,y)as[P e e
Vz.P(z,G(c))as [P e G|
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Non-Perfect Discrimination Tree

Contains:

Va.P(x,y)as [P e o]
Vz.P(z,G(c))as [P e G|
Lookup:
Vz.P(c,z)as[Pce|
matches both formulas
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Non-Perfect Discrimination Tree

Contains:

Va.P(x,y)as [P e o]
Vz.P(z,G(c))as [P e G|
Lookup:

Va.3z. P(x, z)

not [P e s, o]

but[P e z]

matches only P(z,y)
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verit-schedgen a Toolbox to Work With Schedules

Multiple tools to work with static strategy schedules

Can generate schedules

Focus on simplicity and stability
Implemented in Python
® with few extra dependencies

Availableathttps://gitlab.uliege.be/verit/schedgen
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https://gitlab.uliege.be/verit/schedgen

What is a strategy?

e Astrategy is a full parameterization of the system
® Foran SMT solver:

® select preprocessing methods

® select instantiation procedures

® set limits for instantiation procedures
[ ]



What is a strategy schedule?

Afinite list [(¢1, 1), ..., (t,,, S,,)]

® ¢, aretime limits

® s, € Sarestrategies

>, t; < Tis the total timeout

® We require that the ¢; are from finite set TS of allowed time slices
In the following S = TS x S

Furthermore, we have training benchmarks (denoted b)
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Encoding

fI:b:

| X
jzb

maximize

> @ with X, == {d | () € Sand s solves bin time < ¢}
iex,
> Ty

D

beB

45



What’s in the box?

e schedgen-optimize - generate schedules

e schedgen-finalize - generate scripts from a schedule and a template
e schedgen-simulate - calculate the benchmarks solved by a schedule
e schedgen-query - list unsolved benchmarks, compare schedules

e schedgen-visualize -inspect aschedule visually
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Walkthrough: Input Data

benchmark ;
base0l.smt2 ;
base02.smt2 ;
base03.smt2 ;

This is artificial example data. All exampes are included in the source code repository.

logic
UF
UF
UF

’

strategy
base-strategy
base-strategy

base-strategy ;

?

’

solved
yes
yes
yes

’
’
?

’

time

; 0.5189

0.2164

; 0.1754
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Walkthrough: schedgen-optimize

$ schedgen-optimize.py
-1 UF --epsilon 0.1 -t 6 \
-s 0.5 1.0 23456\
--pre-schedule one_second_schedule.csv \
--pre-schedule-time 1 \
-c -d contrib/example_data.csv \
contrib/example_schedule.csv
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Walkthrough: Generated Schedule

time ; strategy
1.100 ; base-strategy
1.000 ; extra0l

0.900 ; extra02
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Walkthrough: Visualize

$ schedgen-visualize.py -t 6 -p out.pgf \
-a contrib/example_shorthand.csv \
contrib/example_schedule.csv

AlAAAAliAAAlAAAA|iAAA|AAAAiAAAA|AAAI'AAAA'AAAI'AAAA'AAAI‘|

I T T T T T T T T T T S T S |

base | el | e2 | e3 | e4 | e5

—T9 —T©°
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Walkthrough: Simulate

$ schedgen-simulate.py -1 UF -t 6 \
-c -d contrib/example_data.csv \
--mu 0.05 --sigma 0.01 --seed 1 \

contrib/example_schedule.csv simulation_1.txt

Solved Benchmarks

40

w
o
|

20 4

—
o
|

intense jitter

slightjitter
base strategy

1 2 3 4
CPU Time

T
5 6
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Walkthrough: Query

$ schedgen-query.py -c -d contrib/example_data.csv \
-q unsolved contrib/example_schedule.csv
special®l.smt2
unsolved.smt2

e compare Solved by virtual best solver, but not the schedule
e best Virtual best solver (score and solved benchmarks)
e schedule Schedule performance (score and solved benchmarks)
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Does it work?

e SMT-COMP 2020, 2021, 2022
® |sabelle/HOL smt tactic: best strategy, three complementary strategies

® Best: only timeslice is 3 s, generate 3 s schedule
® Complementary: same, but 9 s schedule,

e Evaluate new features: generate schedules with and without
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Does it work?

Solved Splitl  Split2  Split3  Split4  Splits Arith. Mean (o)
virtual best 1355 1318 1328 1293 1338 1326 (23.1)
generated 1349 1306 1317 1283 1326 1316 (24.4)
greedy 1340 1303 1314 1275 1326 1312 (24.7)
best strategy 1311 1267 1280 1243 1299 1280 (26.7)
PAR-2 score Arith. Mean (o)
virtual best 160501 174213 170347 182938 167371 171074 (8316)
generated 164388 179811 175453 187851 172102 175921 (8736)
greedy 169183 183040 178817 192482 173655 179435 (8974)
best strategy 176844 192438 187772 201248 180966 187854 (9606)

9000 benchmarks. Five splits of 7200 training benchmarks and 1800 evaluation

benchmarks.
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