
Optimal Strategy Schedules for Everyone

Hans-Jörg Schurr1

1University of Lorraine, CNRS, Inria, and LORIA

August 11, 2022
PAAR 2022 — Haifa, Israel

1 / 22

verit-schedgen a Toolbox to Work With Schedules

▶ Multiple tools to work with static strategy schedules

▶ Can generate schedules

▶ Focus on simplicity and stability
▶ Implemented in Python

▶ with few extra dependencies

▶ Available at https://gitlab.uliege.be/verit/schedgen

2 / 22

https://gitlab.uliege.be/verit/schedgen

Motivation

Welcome to the veriT team!
Now the noble task of submitting
veriT to the SMT competition
falls to you.

3 / 22

Motivation

Great!
How do I update the
strategy schedule?

3 / 22

Motivation

I use my profound knowledge
of veriT and careful study of
the strategies to build
schedules by hand.

3 / 22

Motivation

Oh no!

3 / 22

Motivation

I wonder if I could use
integer programming
to generate optimal schedules.

3 / 22

Motivation

My three day hack works well,
now I will spend weeks to add
features and to polish everything.

3 / 22

What is a strategy?

▶ A strategy is a full parameterization of the system
▶ For an SMT solver:

▶ select preprocessing methods
▶ select instantiation procedures
▶ set limits for instantiation procedures
▶ . . .

4 / 22

What is a strategy schedule?

▶ A finite list [(t1, s1), . . . , (tn, sn)]

▶ ti are time limits

▶ si ∈ S are strategies

▶
∑

i ti ≤ T is the total timeout

▶ We require that the ti are from finite set TS of allowed time slices

▶ In the following S = TS× S

▶ Furthermore, we have training benchmarks (denoted b)

5 / 22

What is a strategy schedule?

▶ A finite list [(t1, s1), . . . , (tn, sn)]

▶ ti are time limits

▶ si ∈ S are strategies

▶
∑

i ti ≤ T is the total timeout

▶ We require that the ti are from finite set TS of allowed time slices

▶ In the following S = TS× S

▶ Furthermore, we have training benchmarks (denoted b)

5 / 22

Encoding

T ≥
∑

(t,s)∈S

ẋ(t,s)t

ẋs =
∑

1≤i≤n

ẋ(ti ,s)

xb =
∑
ẋ∈Xb

ẋ with Xb :=
{
ẋ(t,s) | (t, s) ∈ S and s solves b in time ≤ t

}
ẋb|Xb| ≥ xb

ẋb ≤ xb + 0.5

maximize
∑
b∈B

ẋb

Set of timeslice, strategy pairs.

Binary variable. Indicates that a pair was picked.

6 / 22

Encoding

T ≥
∑

(t,s)∈S

ẋ(t,s)t

ẋs =
∑

1≤i≤n

ẋ(ti ,s)

xb =
∑
ẋ∈Xb

ẋ with Xb :=
{
ẋ(t,s) | (t, s) ∈ S and s solves b in time ≤ t

}
ẋb|Xb| ≥ xb

ẋb ≤ xb + 0.5

maximize
∑
b∈B

ẋb

Pick each strategy only once.

6 / 22

Encoding

T ≥
∑

(t,s)∈S

ẋ(t,s)t

ẋs =
∑

1≤i≤n

ẋ(ti ,s)

xb =
∑
ẋ∈Xb

ẋ with Xb :=
{
ẋ(t,s) | (t, s) ∈ S and s solves b in time ≤ t

}

ẋb|Xb| ≥ xb

ẋb ≤ xb + 0.5

maximize
∑
b∈B

ẋb

How often is the benchmark b solved?

Set of pairs that solve the benchmark b.

6 / 22

Encoding

T ≥
∑

(t,s)∈S

ẋ(t,s)t

ẋs =
∑

1≤i≤n

ẋ(ti ,s)

xb =
∑
ẋ∈Xb

ẋ with Xb :=
{
ẋ(t,s) | (t, s) ∈ S and s solves b in time ≤ t

}
ẋb|Xb| ≥ xb

ẋb ≤ xb + 0.5

maximize
∑
b∈B

ẋb

Force ẋb to 1 if xb > 1.

Force ẋb to 0 if xb = 0.

6 / 22

Encoding

T ≥
∑

(t,s)∈S

ẋ(t,s)t

ẋs =
∑

1≤i≤n

ẋ(ti ,s)

xb =
∑
ẋ∈Xb

ẋ with Xb :=
{
ẋ(t,s) | (t, s) ∈ S and s solves b in time ≤ t

}
ẋb|Xb| ≥ xb

ẋb ≤ xb + 0.5

maximize
∑
b∈B

ẋb Count the solved benchmarks.

6 / 22

What’s in the box?

▶ schedgen-optimize – generate schedules

▶ schedgen-finalize – generate scripts from a schedule and a template

▶ schedgen-simulate – calculate the benchmarks solved by a schedule

▶ schedgen-query – list unsolved benchmarks, compare schedules

▶ schedgen-visualize – inspect a schedule visually

7 / 22

What’s in the box?

▶ schedgen-optimize – generate schedules

▶ schedgen-finalize – generate scripts from a schedule and a template

▶ schedgen-simulate – calculate the benchmarks solved by a schedule

▶ schedgen-query – list unsolved benchmarks, compare schedules

▶ schedgen-visualize – inspect a schedule visually

7 / 22

What’s in the box?

▶ schedgen-optimize – generate schedules

▶ schedgen-finalize – generate scripts from a schedule and a template

▶ schedgen-simulate – calculate the benchmarks solved by a schedule

▶ schedgen-query – list unsolved benchmarks, compare schedules

▶ schedgen-visualize – inspect a schedule visually

7 / 22

What’s in the box?

▶ schedgen-optimize – generate schedules

▶ schedgen-finalize – generate scripts from a schedule and a template

▶ schedgen-simulate – calculate the benchmarks solved by a schedule

▶ schedgen-query – list unsolved benchmarks, compare schedules

▶ schedgen-visualize – inspect a schedule visually

7 / 22

What’s in the box?

▶ schedgen-optimize – generate schedules

▶ schedgen-finalize – generate scripts from a schedule and a template

▶ schedgen-simulate – calculate the benchmarks solved by a schedule

▶ schedgen-query – list unsolved benchmarks, compare schedules

▶ schedgen-visualize – inspect a schedule visually

7 / 22

Walkthrough: Input Data

benchmark ; logic ; strategy ; solved ; time

base01.smt2 ; UF ; base-strategy ; yes ; 0.5189

base02.smt2 ; UF ; base-strategy ; yes ; 0.2164

base03.smt2 ; UF ; base-strategy ; yes ; 0.1754

...

This is artificial example data. All exampes are included in the source code repository.

8 / 22

Walkthrough: schedgen-optimize

$ schedgen-optimize.py

-l UF --epsilon 0.1 -t 6 \

-s 0.5 1.0 2 3 4 5 6 \

-c -d contrib/example_data.csv \

contrib/example_schedule.csv

9 / 22

Walkthrough: schedgen-optimize

$ schedgen-optimize.py

-l UF --epsilon 0.1 -t 6 \

-s 0.5 1.0 2 3 4 5 6 \

--pre-schedule one_second_schedule.csv \

--pre-schedule-time 1 \

-c -d contrib/example_data.csv \

contrib/example_schedule.csv

10 / 22

Walkthrough: Generated Schedule

time ; strategy

1.100 ; base-strategy

1.000 ; extra01

0.900 ; extra02

...

11 / 22

Walkthrough: schedgen-finalize

$ schedgen-finalize.py

-l UF -t 6 \

-s contrib/example_schedule.csv \

--executable ./veriT \

contrib/scheduler_template schedule.sh

12 / 22

Walkthrough: schedgen-finalize

...

case "$logic" in

{% for logic in logics %}

{{ logic }})

{% for time,strategy in schedules[logic] -%}

{%- if loop.last -%}

finishwith {{ strategy }}

;;

{% else %}

trywith {{ (time*1000)|int }} {{ strategy }}

{% endif -%}

{%- endfor -%}{%- endfor %}

esac

...

13 / 22

Walkthrough: schedgen-finalize

case "$logic" in

UF)

trywith 1100 base-strategy

trywith 1000 extra01

trywith 900 extra02

...

finishwith extra5

;;

esac

14 / 22

Walkthrough: Visualize

$ schedgen-visualize.py -t 6 -p out.pgf \

-a contrib/example_shorthand.csv \

contrib/example_schedule.csv

1 2 3 4 5 6

0 6

base e1 e2 e3 e4 e5

0 6

15 / 22

Walkthrough: Simulate

$ schedgen-simulate.py -l UF -t 6 \

-c -d contrib/example_data.csv \

--mu 0.05 --sigma 0.01 --seed 1 \

contrib/example_schedule.csv simulation_1.txt

0 1 2 3 4 5 6
0

10

20

30

40

CPU Time

S
ol
ve
d
B
en
ch
m
ar
ks

intense jitter

slight jitter

base strategy

16 / 22

Walkthrough: Query

$ schedgen-query.py -c -d contrib/example_data.csv \

-q unsolved contrib/example_schedule.csv

special01.smt2

unsolved.smt2

▶ compare Solved by virtual best solver, but not the schedule

▶ best Virtual best solver (score and solved benchmarks)

▶ schedule Schedule performance (score and solved benchmarks)

17 / 22

Does it work?

▶ SMT-COMP 2020, 2021, 2022
▶ Isabelle/HOL smt tactic: best strategy, three complementary strategies

▶ Best: only timeslice is 3 s, generate 3 s schedule
▶ Complementary: same, but 9 s schedule,

▶ Evaluate new features: generate schedules with and without

18 / 22

Does it work?

Solved Split 1 Split 2 Split 3 Split 4 Split 5 Arith. Mean (σ)

virtual best 1355 1318 1328 1293 1338 1326 (23.1)
generated 1349 1306 1317 1283 1326 1316 (24.4)
greedy 1340 1303 1314 1275 1326 1312 (24.7)
best strategy 1311 1267 1280 1243 1299 1280 (26.7)

PAR-2 score Arith. Mean (σ)

virtual best 160 501 174 213 170 347 182 938 167 371 171 074 (8 316)
generated 164 388 179 811 175 453 187 851 172 102 175 921 (8 736)
greedy 169 183 183 040 178 817 192 482 173 655 179 435 (8 974)
best strategy 176 844 192 438 187 772 201 248 180 966 187 854 (9 606)

9000 benchmarks. Five splits of 7200 training benchmarks and 1800 evaluation
benchmarks.

19 / 22

Future Work

▶ mach’ma
▶ Parallelizing schedule runner.
▶ Idea: use cgroups to handle memory contention.

▶ Tool to find promising strategies.
▶ Well researched field.
▶ I don’t want to reinvent the wheel, but would fit well into the toolbox.

▶ Out of scope: strategy selection based on benchmark features.

20 / 22

Thank you for
Your Attention!

https://gitlab.uliege.be/verit/schedgen

I am happy about feedback and bug reports.

https://gitlab.uliege.be/verit/schedgen

Order

▶ The order of the strategies in the schedule is nondeterministic

▶ Best effort order: pick pair with lowest cost

▶ Lowest cost: sum of solving time plus solving time by virtual best solver for
unsolved benchmarks

22 / 22

