
Preprocessing in Higher-order
Reasoning

Learning from QBF Solving

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Hans-Jörg Schurr
Matrikelnummer 0925891

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dr.phil. Alexander Leitsch
Mitwirkung: Priv.-Doz. Dr.-Ing. Christoph Benzmüller

Wien, 17. August 2017
Hans-Jörg Schurr Alexander Leitsch

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Hans-Jörg Schurr
Hindenburgdamm 57a
12203 Berlin

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 17. August 2017
Hans-Jörg Schurr

Diploma Thesis

Preprocessing in Higher-order
Reasoning

Learning from QBF solving

Hans-Jörg Schurr

17. August 2017

Written during a
visit to the FU Berlin

supported by
Priv.Doz. Dr.Ing.

Christoph
Benzmüller

Advised at TU Wien
by

Univ.Prof. Dr.Phil.
Alexander Leitsch

Kurzfassung
In dieser Diplomarbeit präsentieren wir mehrere Algorithmen zur Vorverar-
beitung von Formeln der höherstufigen Logik. Diese Logik erlaubt, neben
der Quantifizierung über Individuen, auch die Quantifizierung über Funktio-
nen und Relationen. Wir beschäftigen uns im speziellen mit dem Problem des
automatischen Beweisens. Ein automatischer Beweiser für die Logik höherer
Stufe ist das Leo-III System. Im Rahmen der vorliegenden Arbeit, wurde Leo-
III um mehrere Algorithmen, welche auf Verfahren zur Vorverarbeitung von
quantifizierte Boolsche Formeln basieren, erweitert. Quantifizierte Boolsche
Formeln sind eine Erweiterung der Aussagenlogik und erlauben zusätzlich die
Quantifizierung über Wahrheitswerte. Diese Formeln sind ein Fragment der
höherstufigen Logik.
In den ersten zwei Kapiteln der vorliegenden Arbeit stellen wir diese zwei

Logiken ausführlich vor. Viele moderne Systeme zum Lösen von quantifizier-
ten Boolschen Formeln setzen auf einen Vorverarbeitungsschritt. Ein solcher
Schritt produziert ein äquivalentes, aber potentiell einfacheres Problem. Wir
untersuchten, ob es möglich ist einige dieser Algorithmen auf die Logik hö-
herer Stufe zu adaptieren. Deshalb präsentieren wir zuerst einige dieser Tech-
niken und stellen dann die folgenden vier Techniken für die Logik höherer
Stufe vor:
Universal reduction erlaubt das Entfernen von Literalen aus Klauseln, wenn

diese universell quantifiziert sind und in keinem anderen Literal der Klausel
auftauchen. Constant extraction verwendet einen Sᴀᴛ Löser um Literale zu fin-
den, welche notwendigerweise von der Formel impliziert sind, und fügt diese
als neue Klausel zum Problem hinzu. Blocked clause elimination ermöglicht das
Entfernen von Klausel wenn alle Resolventen bezüglich eines Literals tautolo-
gisch sind. Unsere Adaption verwendet Pattern-Literale und funktioniert mit
Formeln ohne Gleichheit. First-order re-encoding verpackt die Literale eines
Problems in eine spezielle Relation um die primitive Substitution zu verzö-
gern.
Alle vier Techniken wurden für den Beweiser Leo-III implementiert. Wei-

ters wurden zwei Werkzeuge programmiert, welche quantifizierte Boolsche
Formeln in Formeln der höherstufigen Logik übersetzen. Leo-III konnte aus
nur wenige dieser Probleme lösen. Die Algorithmen wurden deshalb mit Pro-
blemen aus der ᴛᴘᴛᴘ Bibliothek untersucht.

2

Abstract
In this thesis we present some preprocessing techniques for theorem proving in
higher-order logic which are based on preprocessing techniques for quantified
Boolean formulas. Higher-Order Logic (Hᴏᴌ) is a language which extends the
well-known first-order logic with support for quantification over predicates
and functions. In particular, we are interested in the development of automatic
theorem provers for this logic. Automatic theorem provers attempt to find
proofs for Hᴏᴌ formulas without further user input. One such system is Leo-
III.
Quantified Boolean Formulas (QBF), on the other hand, are an extension of

propositional logic with explicit quantification over truth values. The validity
of QBFs is, in contrast to Hᴏᴌ, decidable. Since Hᴏᴌ also supports quantification
over truth values it is possible to translate every QBF into an equivalent Hᴏᴌ
formula. We also discuss ᴅQBF, an extension of QBF.
Most modern QBF solving systems apply a preprocessing step before they

start solving the input problem. Often this is done by invoking an external
preprocessing tool. The output of the preprocessing tool is a potentially easier,
but equivalent problem. We investigated whether it is possible to adapt some
of the techniques used by QBF preprocessing systems to Hᴏᴌ. Towards this end,
we give an overview of common QBF preprocessing techniques and present
four algorithms for Hᴏᴌ.
Universal reduction allows the removal of literals from clauses if they are uni-

versally quantified and appear in no other literal of the clause. Constant extrac-
tion uses a Sᴀᴛ solver to find literals necessary implied by the problem and adds
them as a unit clause. Blocked clause elimination allows the removal of clauses
if all resolvents on a literal are tautological. Our adaption uses pattern literals
and works for problems without equality. Finally, first-order re-encoding wraps
literals in a fresh proposition to delay primitive substitution.
All four preprocessing techniques were implemented in the Leo-III theorem

prover. To evaluate the performance of Leo-III and Leo-III augmented with
our techniques on QBF and ᴅQBF problems, we developed two flexible tools
which translate those problems into Hᴏᴌ. Unfortunately, Leo-III could only
solve a few of these. Hence, we evaluate the impact of our preprocessing
techniques on Hᴏᴌ problems instead.

3

Contents

1 Introduction · 7

2 Higher-order Logic · 9
2.1 The Syntax · 10
2.2 Two Semantics · 13
2.3 Automating Higher-order Logic · 16

2.3.1 Aspects of Proof Calculi for HOL · 17
2.3.2 The Leo-III Prover · 23
2.3.3 The TPTP Infrastructure · 24

3 Quantified Boolean Formulas · 27
3.1 The Structure of Quantified Boolean Formulas · 28
3.2 The Solving Pipeline · 35
3.3 Dependently Quantified Boolean Formulas · 37

4 Preprocessing Techniques · 41
4.1 Preprocessing for QBF and DQBF · 41
4.2 Universal Reduction · 45
4.3 Constant Extraction · 46

4.3.1 SAT Based Constant Extraction · 48
4.4 Blocked Clause Elimination · 54

4.4.1 First-order Blocked Clause Elimination · 55
4.4.2 Higher-order Blocked Clause Elimination · 58

4.5 First-order Re-encoding · 65

5 Implementation · 69
5.1 Aspects of the Implementation · 69

5.1.1 Bindings for PicoSAT · 71
5.2 From QBF to HOL: QBFToys · 72
5.3 Benchmarking · 77

5.3.1 Empirical Results · 78

4

6 Insights · 87
6.1 Related Work · 87
6.2 Further Work · 88
6.3 Conclusion · 90

Bibliography · 93

Index · 101

5

1 Introduction
The field of automatic reasoning is concerned with developing computer pro-
grams which perform formal logical reasoning without additional user input.
Such reasoning might be the construction of proofs, checking proofs for their
correctness, or searching for models of logical formulas.
This thesis connects two areas in automatic reasoning: Higher-order theo-

rem proving and QBF solving. Higher-order logic is an expressive logic which
allows quantification over functions and relations in addition to quantification
over individuals. Quantified Boolean Formulas (QBF) are an extension of clas-
sical propositional formulas with quantification over Boolean values. The set
of QBFs forms a fragment of higher-order formulas. Recent tools for solving
QBFs rely heavily on preprocessing techniques (see section 3.2) and the question
arises: Can some of those preprocessing techniques be lifted to higher-order
theorem proving? This question is the starting point for this thesis.
The first two chapters introduces the background used in the subsequent

chapters.
Since we aim to improve higher-order theorem proving, we first describe

higher-order logic, including its syntax and semantics. Furthermore, we give
an overview of software systems related to higher-order theorem proving.
Our description will focus on Leo-III, the system which was extended by our
preprocessing techniques.
Subsection 2.3.2 describes the architecture of the Leo-III prover and the used

proof calculus. Then, subsection 2.3.3 describes the ᴛᴘᴛᴘ project. The ᴛᴘᴛᴘ in-
frastructure provides a standard format to represent logic problems and proofs.
Furthermore, the ᴛᴘᴛᴘ library contains an extensive set of logical problems.
In chapter 3, we describe quantified Boolean formulas. Their syntax and

semantics is much simpler than syntax and semantics of full higher-order logic.
Afterwards the design of modern QBF solvers is discussed in section 3.2. We
focus our discussion on systems which performed well in a recent QBF solving
competition. Most of those systems relied on preprocessing.
Before giving an overview of preprocessing techniques used in QBF solving

at the end of this chapter, we introduce Dependently Quantified Boolean For-
mulas (ᴅQBF), a generalization of QBFs.

7

1 Introduction

In the fourth chapter, we propose four preprocessing techniques for higher-
order theorem proving. We start with lifting universal reduction to Hᴏᴌ. Uni-
versal reduction is an integral part of resolution for QBF and has a direct corre-
spondence in higher-order logic.
Then we introduce a technique which uses a Sᴀᴛ solver to find constant

literals. Constant literals are added to the input problem as new unit clauses
without changing its satisfiability status. Furthermore, transitivity constraints
induced by the equalities appearing in the input problem enrich the Sᴀᴛ prob-
lem.
The third proposed preprocessing technique is blocked clause elimination.

This is a successful and important technique in QBF preprocessing. Lifting
blocked clause elimination to higher-order logic is possible, but results in ad-
ditional challenges. We present an adaptation of blocked clause elimination
to higher-order logic without equality which utilizes the pattern fragment of
higher-order logic.
Finally, we investigate first-order re-encoding. This technique is not directly

inspired by a QBF preprocessing technique, but imitates the encoding of QBFs
into first-order logic. By doing so, application of the primitive substitution
rule can be delayed. This rule guesses instantiations and therefore induces non-
determinism into the search procedure. We describe primitive substitution in
section 2.3.1.
In chapter 5 we describe the implementation of the preprocessing techniques

presented above. We start with an overview of the challenges encountered
while implementing the preprocessing techniques. Then we discuss a set of
tools which was developed to encode QBFs and ᴅQBFs as higher-order prob-
lems in the ᴛᴘᴛᴘ format. Documentation for the tools can be found in sec-
tion 5.2. Afterwards, the results of evaluating the implemented techniques are
presented.
Finally, chapter 6 puts the work done in this thesis in a wider context by

presenting related work and suggesting future work.

8

2 Higher-order Logic
In this section we introduce higher-order logic. We start with an informal
discussion and then present its formal syntax and semantics. For the sake of
brevity we will use the abbreviation Hᴏᴌ for higher-order logic from now on.
In fact there are many higher-order logics and the abbreviation Hᴏᴌ will be
used for a specific incarnation of Church’s type theory as discussed below.
Higher-order logic is a generalization of second-order logic, which itself is,

not surprisingly, a generalization of first-order logic. The Stanford Encyclo-
pedia of Philosophy introduces second-order logic in the following way:

Second-order logic is an extension of first-order logic where, in
addition to quantifiers such as “for every object (in the universe of
discourse),” one has quantifiers such as “for every property of objects
(in the universe of discourse).” (Enderton 2015)

Second-order logic is a genuine extension of first-order logic. Consider, for
example, an axiomatization of the natural numbers. One well-known prop-
erty of the natural numbers is well-ordering: Every set of natural numbers has
a smallest member. If P is a predicate symbol with one argument, then the
first-order sentence

∃x. Px→ ∃x. (Px ∧ ∀y. (Py → (y = x ∨ x < y)))

expresses the idea, that if P is true for at least one element, then there is an
element for which P is true and all other elements, for which P is true, are
bigger. Then, to express the well-ordering property, we need to speak about
all properties (sets) P . This results in the second-order sentence

∀P. (∃x. Px→ ∃x. (Px ∧ ∀y. (Py → (y = x ∨ x < y)))).

In first-order logic, however it is always possible to find models of Peano
arithmetic which are not isomorphic to the natural numbers. Those non-
standard models are not well-ordered. Thus, it is not possible to express the
well-ordering of the natural numbers as a first-order sentence (see Enderton
2015).

9

2 Higher-order Logic

After allowing quantification over properties of individuals, it is just natural
to allow quantification over properties of properties, over properties of prop-
erties of properties, and so on. If any arbitrary, but finite, nesting is allowed,
the resulting logic is often called type theory. One can also think about con-
tinuing this into the transfinite. All those logics are called higher-order logics
(see Enderton 2015).
A specific incarnation of type theory is Church’s type theory, which is of-

ten also called simple type theory. Alonzo Church formulated this type theory
in Church (1940). As the name suggests, type theory assigns types to the en-
tities (individuals, functions, etc.) the language speaks about. By doing so
Russell’s paradox can be avoided, since the paradoxical formulas become un-
typeable. This means, that it is impossible to assign a type to the set of all
sets that do not contain themselves. Church’s type theory utilizes Church’s λ-
calculus to denote functions. Furthermore, since properties, sets, and relations
can be expressed as functions from entities to Booleans the notion of functions
is primitive in Church’s type theory (see Andrews 2014).
Today, a wide variety of variants and extensions of Chuch’s type theory

exist. The variant of logic used by the Leo-III prover is also called extensional
type theory with choice. For an overview of the development of Hᴏᴌ in the
context of automatization see Benzmüller and Miller (2014).
For the purpose of this thesis we only consider classical higher-order logic

and classical quantified Boolean formulas and omit their intuitionistic variants.
One central difference between classical and intuitionistic logic is that classical
logic admits the law of the excluded middle (A ∨ ¬A) while intuitionistic
logic does not. An overview of intuitionistic logic with a focus on first-order
logic, the related philosophical questions and further references can be found
in Moschovakis (2015).

2.1 The Syntax
We now introduce the version of Church’s type theory which is used by the
Leo-III prover. When using the abbreviation Hᴏᴌ, we refer to exactly this logic.
We follow the syntax definition and the notations given by Steen,Wisniewski,
and Benzmüller (2016).
The types of Hᴏᴌ are terms freely generated by the binary type constructor→

and a finite set of base types T0. This means that the base types in T0 are types
and if τ and ν are types, then (τ → ν) is a type too. The set T0 contains at least
the two primitive types o and ι. Intuitively the type o denotes Boolean values
and ι is the domain of individuals. Furthermore, a type (τ → ν) is the type of

10

2.1 The Syntax

functions with domain type τ and codomain type ν. T is the set of all types
and the letters τ and ν denote arbitrary types. More formally:

Definition 2.1.1 (Types and Primitive Types). The set T0 = {o, ι} are the
primitive types. Let Ti = {τ → ν | τ, ν ∈ Ti−1}. Then

T =
∪
i≥0

Ti

is the set of types.
To omit parenthesis, we assume that→ associates to the right. Hence, α→

β → γ denotes (α→ (β → γ)).
Now the terms of Hᴏᴌ can be defined. Let Σ be a signature: A countable

infinite set of symbols, each annotated with a type. Those are the constants. If
the constant c is in the signature and annotated with the type τ , we say that c
is of type τ and write cτ ∈ Σ. All constants are terms. Furthermore, for each
type τ we have a countable infinite set of variables Vτ := {x1τ , x2τ , . . .}. All
variables are terms too. From those primitive terms more complex terms can
be constructed by using abstraction and application. Let Sν be any term, then
(λxiτ . Sν)τ→ν is a term and if Sτ→ν and Tτ are terms, then (Sτ→ν Tτ)ν is a term
too. This construction can be written in a more compact form as a grammar:

Definition 2.1.2 (HOL Terms). The terms of Hᴏᴌ are generated by the fol-
lowing grammar rule:

S, T ::= cτ | xiτ | (λxiτ . Sν)τ→ν | (Sτ→ν Tτ)ν

Definition 2.1.3 (HOL Formulas). The formulas of Hᴏᴌ are the terms of
type o.

Readers familiar with first-order logic might notice a subtlety here: The
distinction between atomic formulas (formulas without logical symbols) and
regular formulas disappears. This allows us to define the usual logical connec-
tive as merely constants.
For Hᴏᴌ we require the set of constants Σ to contain a complete logical sig-

nature. The connectives for disjunction, negation, and, for each type, equality
and universal quantification already form a complete logical signature. Hence,
{∨o→o→o,¬o→o} ⊂ Σ. Furthermore, Σ contains an equality constant =τ

τ→τ→o

and an universal quantification constant Πτ
(τ→o)→o for each type τ . Intuitively,

Πτ
(τ→o)→o pτ→o is true if the predicate pτ→o is true for every element in the type

τ .

11

2 Higher-order Logic

To declutter the syntax, we omit the type superscript. This results in the
overloaded constants =τ→τ→o and Π(τ→o)→o where τ is arbitrary. We will also
omit the types if they are clear from the context. In this text we will use the
letters S, T , and U as syntactic variables denoting arbitrary terms. If they are
annotated with a type in the subscript (e.g. Sτ), they denote arbitrary terms of
that type. Furthermore, we will use xτ , yτ , zτ as alternative variable names to
avoid the index superscript.
Variables can occur in a term either bound or free. The sets of free and

bound variables can be defined by a simple recursion:

Definition 2.1.4 (Free Variables). Given a Hᴏᴌ term S the free variables FS of
S are:

∅ if S = cτ and cτ ∈ Σ

{xiτ} if S = xiτ and xiτ ∈ Vτ
FT − xiτ if S = λxiτ . T

FT ∪ FU if S = (T U)τ

Definition 2.1.5 (Bound Variables). Given a Hᴏᴌ term S the bound variables
BS of S are:

∅ if S = cτ and cτ ∈ Σ

∅ if S = xiτ and xiτ ∈ Vτ
BT ∪ {xiτ} if S = λxiτ . T

BT ∪ BU if S = (T U)τ

Note that variables can occur both free and bound in a term. For exam-
ple, the variable x1o occurs both free and bound in the formula ((λx1o. x

1
o ∨

x2o)o→o x
1
o)o.

To avoid clustering the signature we define the other logical connectives as
functions.

Definition 2.1.6 (Conjunction, Implication, and Disequality). Conjunction is
defined as (∧)o→o→o := λxo. λyo.¬((¬xo)∨ (¬yo)) and implication is defined as
(→)o→o→o := λxo. λyo. (¬xo) ∨ yo. Inequality is defined for arbitrary types τ as
(̸=)τ→τ→o := λxτ . λyτ .¬(xτ = yτ).
We will write this operators in the usual infix notation. Let So and To be

arbitrary formulas then we will write So ∧ To, So → To, and Sτ ̸= Tτ for
arbitrary terms Sτ , Tτ of arbitrary type τ .

12

2.2 Two Semantics

Furthermore, the universal quantification can be used to define the usual
quantifiers syntactically.
Definition 2.1.7 (For-All and Existential Quantifiers).

∀xτ . So := Π(λxτ . So)

∃xτ . So := ¬(Π(λxτ .¬(So)))

The connectives λ, ∀, and ∃ are the binders. To make the syntax clearer,
we will allow lists of variables to appear in the head of the binders. Hence,
λxo, yo. (xo ∧ yo) is the same as λxo. λyo. (xo ∧ yo). Furthermore, parenthesis
can be omitted as usual. Note that the logical operators and application are
left associative. This interacts nicely with the right associativity of the type
constructor. The term (fα→β→γ aα bβ)γ is equivalent to ((fα→(β→γ) aα) bβ)γ .

2.2 Two Semantics
Formulas by themselves are often not enough, one is generally also interested
in their meaning. To this endwe now give a short presentation of the semantic
of Church’s type theory.
This is not as straightforward as it is in the case of first-order logic. While

the completeness of first-order logic was established in a seminal result by
Gödel (1930). Incompleteness of second-order logic with standard semantic,
however, is a direct consequence of Gödel’s famous incompleteness theorem
(Gödel 1931). To recover completeness a weaker notion of validity is needed.
One such notion is the Henkin semantic (cf. Benzmüller and Miller 2014).
Both, standard and Henkin semantic, use similar concepts. We will intro-

duce standard semantic as a stronger case of Henkin semantic. Again the def-
initions and notations given here follow Steen, Wisniewski, and Benzmüller
(2016).
We start with the definition of a frame.

Definition 2.2.1 (Domains and Frames). A frame is a collection {Dτ}τ∈T of
non-empty sets, such that Do = {T,F} and Dτ→ν ⊆ DDτ

ν is a collection of
functions from Dτ to Dν .
T and F are the entities representing truth and falsehood.
This definition does not put any restrictions on the domain of ι. If all the

function domains contain all functions, then we call this frame a standard frame.
Definition 2.2.2 (Standard Frame). A frame, where Dτ→ν = DDτ

ν for all types
τ and ν is called a standard frame.

13

2 Higher-order Logic

As the name suggests, standard semantic only allows standard frames as pos-
sible interpretation, while Henkin semantic allow general frames. Before for-
malizing this notion we need to define the notion of interpretation and the
valuation of a term.

Definition 2.2.3 (Interpretation). An interpretation is a pairM=({Dτ}τ∈T , I)
where {Dτ}τ∈T is a frame and I is a function from the set of constants Σ to∪

τ∈T Dτ , such that I(cτ) ∈ Dτ for all τ ∈ Σ.

A variable assignment is an arbitrary mapping σ :
∪

τ∈T Vτ →
∪

τ∈T Dτ , such
that for all x ∈ Vτ : σ(x) ∈ Dτ . We write σ[z/xτ] for the variable assignment
which maps xτ to z and every other variable yτ to σ(yτ).

Definition 2.2.4 (Valuation). Given an interpretationM and a variable as-
signment σ, the valuation ∥.∥M,σ of a term is recursively defined as:

∥cτ∥M,σ = I(cτ) if cτ ∈ Σ

∥xτ∥M,σ = σ(xτ) if xτ ∈ Vτ
∥(Sτ→ν Tτ)∥M,σ = ∥Sτ→ν∥M,σ(∥Tτ∥M,σ)

∥λxτ . Sν∥M,σ =
(
f : z 7→ ∥Sν∥M,σ[z/xτ]

)
∈ Dτ→ν

From now onwe assume that I assigns the usual denotations to the primitive
logical connectives.

Definition 2.2.5 (Denotation of the Primitive Logical Connectives). The in-
terpretation of the primitive constants is:

• I(∨o→o→o) is the function (x, y) 7→

{
F, if x = F and y = F
T, otherwise.

• I(¬o→o) is the function which maps T to F and F to T.

• I(=τ→τ→o) is the function (x, y) 7→

{
T, if x = y

F, otherwise.

• I(Π(τ→o)→o) is the function f 7→
{
T, if for all x ∈ Dτ : f(x) = T
F, otherwise.

Definition 2.2.6 (Standard Interpretation). A standard interpretation is an in-
terpretationM = ({Dτ}τ∈T , I) where {Dτ}τ∈T is a standard frame.

14

2.2 Two Semantics

Definition 2.2.7 (Henkin Interpretation). A Henkin interpretation is an inter-
pretationM = ({Dτ}τ∈T , I) where {Dτ}τ∈T is a frame such that ∥.∥M,σ is
well defined (i.e. total) for all terms.

The totality of the valuation function has to be added as an additional con-
straint for Henkin interpretations, otherwise it is possible to have λ-terms
whose corresponding function is not part of the domain.
A formula So is called standard (Henkin) valid, if and only if ∥so∥M,σ = T

for every variable assignment σ and every standard (Henkin) interpretation
M. If for any given standard (Henkin) interpretation ∥so∥M,σ = T, we call
this interpretation a standard (Henkin) model. Otherwise it is called a standard
(Henkin) counter model. Note that every standard model is also a Henkin
model. We say a set of formulas {s1o, s2o, . . . , sno} is valid, if and only if every
formula sio is valid.
As mentioned before, a consequence of Gödel’s incompleteness theorem is

the incompleteness of higher-order logic. This means, that there are valid for-
mulas which are not provable in any consistent deduction system for higher-
order logic. Henkin (1950) showed soundness and completeness for Henkin
semantics¹ (cf. Benzmüller and Miller 2014). However, this comes at a cost.
Higher-order logic with Henkin semantics is essentially many-sorted first-
order logic (see Enderton 2015).
While Hᴏᴌ with Henkin semantics has essentially the same valid sentences

as first-order logic, the convenient language is a justification for continued in-
terest in it. Furthermore, Parikh (1973) has shown that there are exist theorems
in arithmetic that have an arbitrary smaller proof in second-order logic then
in first-order logic. In a similar spirit Boolos (1987) presented a theorem of
first-order logic whose shortest proof is so large that it can not be conceived
to be written down. The proof in second-order logic, on the other hand, fits
comfortably onto a few pages.
While we give an overview on the deduction systems used in automatic the-

orem provers in the next section, more classical proof calculi might be of inter-
est. A discussion of Frege-Hilbert style calculi can be found in Benzmüller and
Miller (2014). Furthermore, it is worth mentioning, that the type expressions
can be extended in various ways. One such way is to allow for free variables in
type expressions, resulting in a polymorphic type theory. This is implemented
in the Leo-III prover (see Steen, Wisniewski, and Benzmüller 2017).

1 Henkin himself called Henkin models general models.

15

2 Higher-order Logic

2.3 Automating Higher-order Logic
Given some assumptions s1o, s2o, . . . , sno and a hypothesis so, canwe find a deduc-
tion in some proof calculus that shows so from the assumptions? If the question
can be answered affirmatively, we say that so is provable from s1o, s

2
o, . . . , s

n
o

and write s1o, s2o, . . . , sno ⊢ so. The goal of an automatic theorem prover is to
search for such a deduction without user input other than the problem. Un-
fortunately, Hᴏᴌ with Henkin semantic is only semi-decidable. Therefore, it
is only possible to construct computer systems which can theoretically find
a proof if one exists, but might not terminate if the goal is unprovable. In
practice theorem proving systems may not be able to find proofs, even if they
exist.
This section gives a rough overview of state-of-the-art automatic theorem

proving. We start with an overview of currently used systems. Then subsec-
tion 2.3.1 will describe some aspects of the proof calculi commonly used in Hᴏᴌ
provers. Subsection 2.3.2 describes the Leo-III prover in more detail. Finally,
subsection 2.3.3 describes the ᴛᴘᴛᴘ infrastructure.
Automatic theorem proving is not the only way in which logical reasoning

can be automatized. If a theorem is not provable, it might be possible to find
a counter model. Nitpick by Blanchette and Nipkow (2010) is a tool which
searches for finite counter models. Furthermore, interactive theorem provers con-
struct proofs by interacting with the user. Examples of such systems are the
Coq system (see Bertot and Castran 2010) and Isabelle/HOL (Nipkow, Paul-
son, and Wenzel 2002). The last system also incorporates Nitpick and the
Sledgehammer (Paulson and Blanchette 2010) tool, which allows the user to
use external, fully automated theorem provers for proof search.
The Cᴀᴅᴇ ATP System Competition is an annual competition of automatic

theorem proving systems. Its latest iteration was ᴄᴀSᴄ-ᴊ8, which was part of
The 8th International Joint Conference on Automated Reasoning in 2016².
In the higher-order theorems track four systems participated: Satallax (in two
different configurations), Lᴇᴏ-II, Leo-III (in two different configurations), and
Isabelle. While Leo-III is discussed in subsection 2.3.2, wewill now give a short
description of the other systems.

Leo-II is the successor of Lᴇᴏ-I by Benzmüller and Kohlhase (1998). The
calculus used by Lᴇᴏ-II is called a Rᴜᴇ (resolution by unification and
equality) calculus and equality with extensionality is supported natively.
This removes the challenging extensionality axiom from the search space.

2 see: http://www.cs.miami.edu/~tptp/CASC/J8/

16

http://www.cs.miami.edu/~tptp/CASC/J8/

2.3 Automating Higher-order Logic

Unification is implemented as a variation of Huet’s pre-unification. We
discuss this algorithm in subsection 2.3.1. Furthermore, Lᴇᴏ-II supports
cooperation with first-order provers (see Benzmüller, Paulson, et al.
2015).

Satallax uses a tableau calculus based approach in combination with a Sᴀᴛ
solver. The reasoning process creates a series of potentially refutable for-
mulas. Then propositional formulas corresponding to the meaning of
those formulas are generated and handed to the Sᴀᴛ solver ᴍiniSᴀᴛ. If the
propositional formulas are unsatisfiable the original set of higher-order
formulas is unsatisfiable (see Brown 2013).

Isabelle is an automatized version of the Isabelle/HOL system. While Isabel-
le/HOL is, as discussed above, foremostly an interactive system, it pro-
vides a wide set of automatic tools. While the individual tools are incom-
plete and will by themselves often fail to find a proof, a scheduler can be
used to automatically try various configurations of the automatic tools³.

This list of competitors from the ᴄᴀSᴄ-ᴊ8 competition is of course not a
exhaustive list of available Hᴏᴌ automation tools. Furthermore, it blatantly
disregards the historical development of Hᴏᴌ automation. For more general
overview see Benzmüller and Miller (2014).

2.3.1 Aspects of Proof Calculi for HOL
In this and the next section, we will describe some aspects of proof calculi
used by automatic theorem provers. While multiple complete calculi exist
and are used for automatic proof search, many aspects discussed here are shared
between systems.

LᴀᴍBᴅᴀ TᴇRᴍS

As outlined in section 2.1, Hᴏᴌ terms contain λ-expressions to syntactically rep-
resent functions. The proof calculus must be able to handle those expressions.
The calculus of inference on λ-terms is the λ-calculus. For an introduction
into the λ-calculus, and further references, see Alama (2016).
The first requirement to correctly handle λ-expressions is renaming of

bound variables:
3 For a description of the automatic mode see: http://www.cs.miami.edu/~tptp/CASC/J8/

SystemDescriptions.html#Isabelle---2015

17

http://www.cs.miami.edu/~tptp/CASC/J8/SystemDescriptions.html#Isabelle---2015
http://www.cs.miami.edu/~tptp/CASC/J8/SystemDescriptions.html#Isabelle---2015

2 Higher-order Logic

λxτ . Sν yτ ∈ Vτ and yτ /∈ FS ∪ BS R(α-conv.)
λyτ . Sν [yτ/xτ]

The restrictions on the α-conversion rule ensure that the new variable y is
fresh. This avoids erroneous renaming such as changing the term λx. λy. x to
λy. λy. y. Usually terms which only differ in the name of bound variables are
identified with each other:

Definition 2.3.1 (α-equivalence). A term sτ is α-equivalent with a term tτ ,
if tτ can be constructed from sτ by multiple applications of the α-conversion
rule.

Explicit application of α-conversion can be omitted by using a nameless
representation of the variables in λ-terms such as de-Bruijn indices (see Wis-
niewski, Steen, and Benzmüller 2015).
A substitution σ is a function from variables to terms, which differs from

the identity function only for finitely many variables. We write t/x for the
substitution which replaces the variable x with the term t. A substitution can
be extended to a function from terms to terms by applying them to the free
variables occurring in the input terms. When doing so, α-conversion must be
applied to avoid capturing of free variables. E.g. when applying the substitu-
tion y/x to the term λy. x one must first rename the bound variable y to get
the λz. y. For a given substitution σ, we written t[σ] for an α-equivalent term
of the term t after applying the substitution σ.
Substitutions can be composed. Let σ, θ be two substitutions, then t[θ][σ]

denotes the resulting term after applying first θ and then σ to t.
Secondly, the notion of applying an argument to a function needs to be

expressed. This is done by the β-reduction rule.

(λxτ . Sν)τ→νTτ FT ∩ (FS ∪ BS) = ∅ R(β-red.)
Sν [Tτ/xτ]

As for substitutions the rule is restricted such that accidental binding of free
variables is avoided. Therefore, it might be necessary to apply α-conversation
before applying β-reduction.
The final rule is η-conversion, which expresses functional extensionality.

Two functions are considered equivalent, if they map the all arguments to
the same value. Formally, this is expressed by the following two rules:

λxτ . fτ→ν xτ xτ /∈ Ff R(η-conv.)
fτ→ν

18

2.3 Automating Higher-order Logic

fτ→ν xτ /∈ Ff R(η-conv.′)
λxτ . fτ→ν xτ

Again two terms, such that one term can be transformed into the other by
multiple application of the two η-conversation rules are called η-equivalent.

RᴇSᴏᴌᴜᴛIᴏN

The fundamental idea behind the proof calculi used by Lᴇᴏ-II and Leo-III is
resolution. While the Leo-III system extends and modifies this approach, as
described in subsection 2.3.2, Lᴇᴏ-II is directly based on resolution.
Resolution was first introduced by Robinson (1965) for first-order logic and

was subsequently lifted to higher-order logics. Andrews (1971) gave a proof
of completeness for elementary type theory. Subsequently, Huet (1972) de-
scribed a complete proof search method for elementary type theory. The ap-
proach taken by Lᴇᴏ-II is based on Resolution by Unification and Equality
(Rᴜᴇ-resolution), which again was first developed for first-order logic and sub-
sequently lifted by Benzmüller (1999) to Hᴏᴌ. A discussion of the evolution
of higher-order resolution is presented in Benzmüller (2002) and Benzmüller
(2015) gives a short description of the development and calculus used in Lᴇᴏ-II.
The following presentation of resolution is based on the latter.
As a proof calculus, resolution proofs can only show that a contradiction can

be derived from an input problem. To show the validity of conjecture it has
to be negated first. The resolution rules operate on clauses and the proof is
finished when the empty clause is found.
A clause is a disjunction of formulas. More exactly: A clause is a formula of

the form s1o∨s2o∨· · ·∨sno . A set of the form {s1o, s2o, . . . , sno} is often used instead
of the explicit formula. This also removes the necessity to handle removal of
repeated formulas and the commutativity of the conjunction explicitly. For a
given clause C, we will write C ∨ to for C ∪ {to} and C ∨D for C ∪D. From
the definition of disjunction, we know that in any given interpretation and
variable assignment a clause is true if at least one of its members is true. Hence,
any valuation of the empty clause will always be false. A set of clauses, on the
other hand, is a conjunction of clauses. Such a set is true, if and only if all of is
member clauses are true. Therefore, the empty conjunction is always true.
Furthermore, we will add the polarity of a formula as an annotation: [so]α for

α ∈ {tt ,ff }. [s = t]tt is equivalent to s = t, [s = t]ff is equivalent to s ̸= t, [s]tt
is equivalent to s, and [s]ff is equivalent to ¬s.
The proof search procedure maintains a set of clauses and iteratively applies

the calculus rules which will produce new clauses to add to the clause set. If the

19

2 Higher-order Logic

empty clause is found, a proof for the unsatisfiability of the input problem has
been found. Therefore, to prove the validity of s1o, s2o, . . . , sno ⊢ so, the prover
starts with the clause set {[s1o]tt , [s2o]tt , . . . , [sno]tt , [so]ff }.
The resolution rule is:

C ∨ [s]tt D ∨ [t]ff
R(Res)

C ∨D ∨ [s = t]ff

That is: If a clause of the form C ∨ [s]tt and one of the form D ∨ [t]ff is found
in the clause set, the clause C ∨D∨ [s = t]ff can be added. The new term [s =
t]ff is called the unification constraint. How the prover operates on unification
constraints is described in the next section.
To understand the motivation for this rule it is helpful to sketch an argu-

ment for its soundness. To show soundness, it is necessary to argue, that if the
preconditions are true (under a given interpretation and variable assignment)
the conclusion is true too. If the preconditions are true, then either C or [s]tt
and either D or [t]ff are true. If s and t are not equal, then the conclusion
holds. On the other hand, if they are equal then either [s]tt or [t]ff is false, and
therefore either C or D is true.
Note that the resolution rule together with unification is not a complete

calculus. See Benzmüller (2015) for a presentation of the full calculus used in
Lᴇᴏ-II.

UNIfiᴄᴀᴛIᴏN
As mentioned above, resolution introduces unification constraints which need
to be handled by the prover. The inclusion of explicit unification constraints is
a result of the pre-unification approach which is required to handle unification
in Hᴏᴌ.
Knight (1989) gives the following general definition for the unification prob-

lem:

Given two terms of logic built up from function symbols, variables,
and constants, is there a substitution of terms for variables that will
make the two terms identical?

In the case of Hᴏᴌ this definition means, that we are interested in replacing
the free variables of Hᴏᴌ terms with new Hᴏᴌ terms, such that two given terms
become equal. Such a substitution is called an unifier:

Definition 2.3.2 (Unifier). Given two terms s and t, a substitution σ is a
unifier of s and t if s[σ] = t[σ].

20

2.3 Automating Higher-order Logic

In the case of first-order logic the existence of a unifier is always decidable
and there is exactly onemost general unifier (ᴍGᴜ). A unifier σ is a ᴍGᴜ of s and
t, if for every other unifier θ there is a substitution τ such that τ(σ(x)) = θ(x)
for all variables x. In fact, there are linear time algorithms to find the most
general unifier of two first-order terms, even thought they might not be the
ones used in practice (see Knight 1989).
The following rule describes a possible application of unification during

proof search:

{u1o, u2o, . . . , uno} ∨ [s = t]ff σ is the ᴍGᴜ of s and t
{u1o[σ], u2o[σ], . . . , uno [σ]}

Intuitively, this rule expresses the fact, that if we can find a substitution σ of the
free variables in a clause, such that s[σ] = t[σ], then the unification constraint
[s[σ] = t[σ]]ff is certainly false and can be removed from the clause.
Unfortunately, in the case of higher-order logic finding a unifier is not de-

cidable anymore and there might be infinitely many ᴍGᴜs. Therefore, the
rule we just described can not be used. To solve this, Huet (1975) presented
the pre-unification algorithm to tightly incorporate higher-order unification
into the proof search procedure. Unification problems are no longer solved
eagerly, but first added as unification constraints to the clauses and then solved
by appropriate calculus rules. Lᴇᴏ-II and Leo-III implement a variation of pre-
unification extended by extensionality principles. For an overview of the uni-
fication rules used in Lᴇᴏ-II see again Benzmüller (2015).
While we know that unification for first-order terms is decidable, we might

be interested in further fragments of Hᴏᴌ where unification is decidable. Such
a fragment is the pattern fragment. Nipkow (1993) developed a complete uni-
fication algorithm for the pattern fragment and presented an implementation
in a functional programming language. The definition of patterns used there
is:

Definition 2.3.3 (Pattern). A term t in β-normal form is a (higher-order) pat-
tern if every free occurrence of a variable F is in a subterm F u1 . . . un of t such
that u1 . . . un is η-equivalent to a list of distinct bound variables.

For example, the term λx. λy. F x y is a pattern, while λx. F x x is a non-
pattern (cf. Nipkow 1993).
Since first-order terms do not contain free function or predicate symbols

they all are patterns and therefore pattern unification subsumes first-order uni-
fication. Pattern unification has been implemented in Leo-III and we use it to
implement blocked clause elimination in section 4.4.

21

2 Higher-order Logic

PRIᴍIᴛIᴠᴇ SᴜBSᴛIᴛᴜᴛIᴏN

The primitive substitution rule is used to guess instantiations for predicates in
provers such as Leo-III. Similar rules were proposed by Huet (1972) as splitting
and as primitive substitution by Andrews (1989).
Given a literal of the form Qτ→o S which appears in some clause of the Hᴏᴌ

problem at hand, then primitive substitution will blindly guess the structure
of Q from the operators ¬, ∨, Π, and =.
Hence, primitive substitution as realized by Lᴇᴏ-II and Leo-III is restricted to

the outermost symbol. Only iterated application of the rule can reach deeper
into the term structure.
During prove search, primitive substitution must be applied to ensure com-

pleteness and often plays the role of a fallback, when resolution is not applicable
anymore. The classical example to illustrate the need for primitive substitu-
tion is the term ∃xo. x which is first processed to the singular unit clause [xo]ff .
There is no resolution partner for this clause and the empty clause can not de-
rived from this clause alone. Primitive substitution, however, might guess the
structure of xo to be ¬yo introducing the clause [¬yo]ff into the problem which
normalizes to [yo]

tt . Resolution easily derives the empty clause from [xo]
ff and

[yo]
tt (cf. Benzmüller 2015).

CᴌᴀᴜSIfiᴄᴀᴛIᴏN

As mentioned above, resolution works on a set of clauses. Therefore, auto-
matic theorem provers attempt to first transform the input problem such that
it is a conjunction of disjunctions.
Problems in first-order logic and QBFs can be transformed into a conjunctive

normal form where the only occurring logical connectives are in the topmost
conjunction of disjunctions. For the case of QBFs this is discussed in section 3.1.
Clausification for Hᴏᴌ formulas is complicated by the free nesting of func-

tions and operators. Logical connectives and even quantifiers can occur in
arguments to functions and inside λ-terms. Nevertheless, various methods to
aid the clausification of Hᴏᴌ terms exist. See Wisniewski, Steen, Kern, et al.
(2016) for an overview.
When we say a Hᴏᴌ problem is in clause form, we mean that some processing

has been done to the problem towards creating a conjunction of clauses.

22

2.3 Automating Higher-order Logic

SᴋᴏᴌᴇᴍIᴢᴀᴛIᴏN
Skolemization is part of the pre-processing step and is applied directly after
clausification. Clausification will create a problem of the form

Q1x
1
τ1
. Q2x

2
τ2
. . . . Qix

i
τi
. C1 ∧ C2 ∧ · · · ∧ Cj

where the Qn ∈ {∀, ∃} are quantifiers and the Cn are clauses.
Skolemization will replace the existentially quantified variables with func-

tion constants. That is, if the quantifiers contain ∃xi. . . . each occurrence of
xi will be replaced by (sk i xπ1 . . . xπj

) where sk is of appropriate type and
the xπi

are the variables where Qπi
= ∀ and πi ≤ i. The freshly introduced

functions sk i are called Skolem functions.
Consider for example the term ∀xτ . ∃yδ. P x y, then skolemization will result

in the term ∀xτ . P x (sk τ→δ x).
In the case of Hᴏᴌ, skolemization requires either the inclusion of the axiom

of choice, or it must be restricted in its application to be sound (cf. Benzmüller
and Miller 2014). The automatic theorem provers Lᴇᴏ-II and Leo-III can use
skolemization without problems, since they support choice implicitly.
Wewill encounter Skolem functions in subsection 3.3 to define the semantics

of ᴅQBFs and their translation to Hᴏᴌ.

2.3.2 The Leo-III Prover
Leo-III is the successor of the Lᴇᴏ-II theorem prover. Development started in
2014 and is mostly conducted in the Scala programming language. This is a
departure from the ᴏᴄᴀᴍᴌ language used to develop Lᴇᴏ-II. Besides improving
upon the proof search by employing ordered para-modulation/superposition
and agent based parallelism, Leo-III also supports some new features. One goal
is to extend the type system by including support for type classes and type
constructors similar to System F ω. At the time of writing, type polymorphism
was already implemented. Furthermore, embedding non-classical logics, such
as modal logic, into Hᴏᴌ has been developed as a successful strategy to automate
modal logic (see Benzmüller andWoltzenlogel Paleo 2015). Leo-III will feature
native support for this (cf. Wisniewski, Steen, and Benzmüller 2014).
We will now describe three aspects of Leo-III, which are relevant for the

preprocessing techniques presented in chapter 4. Since the preprocessing tech-
niques are implemented as a part of the overall Leo-III system, we will discuss
the software architecture and the agent based approach.
Leo-III is build upon the system platform ᴌeoᴘᴀRᴅ (Wisniewski, Steen, and

Benzmüller 2015), which provides data structures for term representation, in-

23

2 Higher-order Logic

dexing and search. Furthermore, ᴌeoᴘᴀRᴅ provides the general blackboard
architecture used by the agent based parallelization. While ᴌeoᴘᴀRᴅ was pub-
lished independently of Leo-III, recent iterations of the platform have been
developed as part of Leo-III. Lᴇᴏ-II, the predecessor of Leo-III, utilized a main
loop which loops over a set of clauses while generating new clauses which do
not change the satisfiability status of the problem and subsequently adds the
new clauses to the set of clauses. In Leo-III, however, the reasoning tasks are
separated into specialized agents. The agents autonomously decide when to
execute their work. To find a proof, the agents utilize a blackboard ontowhich
they can write, or delete content (e.g. clauses) from. Leo-III also provides in-
terfaces to external systems, such as Lᴇᴏ-II, or the first order prover ᴇ (cf. Steen,
Wisniewski, and Benzmüller 2016). Furthermore, as part of this thesis project
an interface to the Sᴀᴛ solver ᴘicoSᴀᴛ was developed (see subsection 5.1.1).
The calculus of Leo-III is – similar to classical resolution – refutation-based.

Instead of trying to prove s1o, s2o, . . . , sno ⊢ xo directly, xo is negated and the
prover tries to show that the set {s1o, s2o, . . . , sno ,¬xo} is inconsistent. Provers
do this by adding new clauses until the empty clause is found. The para-
modulation calculus is a refutation-based calculus, which is successfully applied
by first-order provers. This approach extends naïve resolution with an appro-
priate handling of equality, and uses term orders to avoid redundancy in the
generated clauses. Lifting this approach to Hᴏᴌ is complicated by the difficult
nature of higher-order unification. For a sketch of para-modulation as it is ap-
plied in Leo-III and further references see Steen, Wisniewski, and Benzmüller
(2016).

2.3.3 The TPTP Infrastructure
To test automatic theorem provers, one needs to collect a diverse library of Hᴏᴌ
problem. The ᴛᴘᴛᴘ (Thousands of Problems for Theorem Provers) project
provides such a library⁴. While the ᴛᴘᴛᴘ library was first designed for first
order provers, it has been extended to Hᴏᴌ, Hᴏᴌ with polymorphic types, and
various other logics (cf. Sutcliffe and Benzmüller 2010).
The ᴛᴘᴛᴘ language is used to represent input problems. The grammar of

this language is designed such that it can be read directly as a Prolog term.
Consider as an example the surjective Cantor’s theorem:

¬(∃Gι→(ι→o).∀Fι→o.∃xι. (Gx) = F)

4 The ᴛᴘᴛᴘ library is available at: http://www.cs.miami.edu/~tptp/

24

http://www.cs.miami.edu/~tptp/

2.3 Automating Higher-order Logic

This theorem expresses the fact, that for some domains (i.e. infinite domains)
there is no surjective function G from the set of individuals to set of sets of
individuals. Note that in this case sets are expressed by functions of type ι→ o
(predicates).
Listing 1 is the ᴛᴘᴛᴘ encoding of this problem. It can be found in the ᴛᴘᴛᴘ

library under the name SET557ˆ1.p⁵. Some comment lines have been omitted
from the problem for the sake of brevity.

1 %--
2 % File : SET557^1 : TPTP v6.4.0. Released v3.6.0.
3 % Domain : Set Theory
4 % Problem : Cantor's theorem
5 % Version : Especial.
6 % [...]
7 % Status : Theorem
8 % Rating : 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.43

v5.5.0, 0.50 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0,
0.00 v4.0.1, 0.67 v4.0.0, 0.33 v3.7.0

↪→

↪→

9 % [...]
10 %--
11 thf(surjectiveCantorThm,conjecture,(
12 ~ (? [G: $i > $i > $o] :
13 ! [F: $i > $o] :
14 ? [X: $i] :
15 ((G @ X)
16 = F)))).
17
18 %--

Listing 1: Cantor’s theorem as ᴛᴘᴛᴘ problem.

The thf() function is used to describe a Hᴏᴌ formula in the ᴛᴘᴛᴘ language.
It takes as first argument a name followed by a role keyword. Available roles
include axiom, definition, hypothesis, and theorem among others. Then
the actual formula is given. Depending on the chosen logic, the syntax can dif-
fer significantly. In the case of Hᴏᴌ the universal quantifier is represented by !
and a ? represents the existential quantifier. Furthermore, function application

5 The problem can be found on the ᴛᴘᴛᴘ website too: http://www.cs.miami.edu/~tptp/
cgi-bin/SeeTPTP?Category=Problems&Domain=SET&File=SET557^1.p

25

http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Problems&Domain=SET&File=SET557^1.p
http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Problems&Domain=SET&File=SET557^1.p

2 Higher-order Logic

is made explicit as a result of the Prolog compatibility with the @ operator. For
a complete overview of the language, see the annotated BNF grammar available
on the ᴛᴘᴛᴘ web page⁶.
All problems provided by the ᴛᴘᴛᴘ library are categorized into domains. The

problem presented above is part of the set theory (Sᴇᴛ) domain. Beside the
categorization into domains, the ᴛᴘᴛᴘ project also provides tools to search for
problems by various parameters such as the number of symbols, the status,
or the rating of the problem. The rating of a problem is a number between
0.0 and 1.0 and represents the ratio of theorem provers that could solve the
problem. A problem with rating 0.0 could be solved by all provers, whereas
a problem with rating 1.0 is yet unsolved. The ᴛᴘᴛᴘ language is also widely
used as a unified input language for theorem provers and also supports the
representation of proofs. Furthermore, some additional projects are part of the
ᴛᴘᴛᴘ infrastructure, such as the Systemᴏnᴛᴘᴛᴘ service. This service provides a
web interface for a collection of centrally hosted theorem proving systems (see
Sutcliffe 2009).

6 http://www.cs.miami.edu/~tptp/TPTP/SyntaxBNF.html

26

http://www.cs.miami.edu/~tptp/TPTP/SyntaxBNF.html

3 Quantified Boolean Formulas
After introducing the quite expressive language of Hᴏᴌ, wewill now introduce
Quantified Boolean Formulas (QBF). One can define QBFs either as a fragment
of Hᴏᴌ, or as a generalization of propositional formulas. We will start by giv-
ing a definition of the Hᴏᴌ fragment below and then define the generalization
of propositional formulas in section 3.1.
The fragment of QBF formulas are formulas without equality in which only

Boolean variables appear.

Definition 3.0.4 (The QBF Fragment). A Hᴏᴌ formula to is in the QBF frag-
ment if:

1. All variables in to are of type o,

2. Equality does not appear in to,

3. Lambda terms only appear in the form Π(λxio. So), where So is a formula
in the QBF fragment.

Because of the third restriction, lambda terms are only allowed to express
universal (∀xo. S) and existential (∃xo. S) quantification.
The Hᴏᴌ formula ∀xo.∃yo. (¬y∨x)∧ (¬x∨y) is a semantically valid formula

in the QBF fragment, whereas ∃yo.∀xo. (¬y ∨ x) ∧ (¬x ∨ y) is counter satisfi-
able. Since the domain of Boolean values (T and F) is finite and therefore only
finitely many assignments to the variables in a formula from the QBF fragment
exist, the validity of formulas in the QBF fragment is decidable.
In the next section we will define QBFs independently from Hᴏᴌ and we will

introduce the notion of solving QBFs. Subsequently, section 3.2 describes some
state of the art QBF solving systems. To do so we start with a list of systems
which participated in a recent competitive evaluation of QBF solving systems.
As we will see, the majority of those systems rely on preprocessing tools.
When generalizing from propositional formulas one does not need to stop at

QBFs, but can go further to Dependently Quantified Boolean Formulas (ᴅQBF).
Wewill introduce ᴅQBFs in section 3.3. While dependently quantified Boolean
formulas do not correspond to a fragment of Hᴏᴌ as directly as vanilla QBFs do,

27

3 Quantified Boolean Formulas

we will identify Hᴏᴌ formulas that correspond to ᴅQBF problems. Some QBF
preprocessing techniques have been lifted to ᴅQBF solving. Those techniques
are good candidates for lifting to Hᴏᴌ.

3.1 The Structure of Quantified Boolean Formulas
Quantified Boolean formulas (QBF) are generalizing propositional formulas by
adding universal and existential quantifiers over truth values. We will now
present QBFs without using the language of Hᴏᴌ. Our discussion is inspired
by the discussion in Büning and Bubeck (2009). Let V = {x1, x2, . . . } be a
countable infinite set of propositional variables, then the QBFs are:

Definition 3.1.1. Quantified Boolean Formulas

• Every xi ∈ V is a QBF,

• if s is a QBF, then so is ¬s,

• if s and t are QBFs, then so is s ∨ t,

• if s and t are QBFs, then so is s ∧ t,

• if s is a QBF and xi ∈ V is a variable, then ∃xi. s is a QBF,

• if s is a QBF and xi ∈ V is a variable, then ∀xi. s is a QBF.

The difference between pure propositional formulas and QBFs are the two last
rules. If those two rules are not used, the resulting formulas are propositional
formulas. The connectives ∨ and ∧ express disjunction and conjunction and
the quantifiers express quantification over truth values. Free (Fs) and bound
(Bs) variables of a QBF s, are defined in the same way as they are defined for
Hᴏᴌ terms. Furthermore, we will use the same shorthand notations as for Hᴏᴌ
formulas. The QBF that intuitively correspond the Hᴏᴌ formulas in the QBF
fragment mentioned above are ∀x.∃y. (¬y ∨ x) ∧ (¬x ∨ y) and ∃y.∀x. (¬y ∧
x) ∨ (¬x ∧ y).
To define the semantics of QBFs we again use the notion of an interpretation.

A QBF-interpretation is a mapping I : V→ {T,F}. Given a QBF-interpretation
I, we can again extend this recursively to a mapping from QBFs to truth values.

Definition 3.1.2 (Valuation of Quantified Boolean Formulas). Given a QBF-
interpretation I then the valuation ∥.∥I is recursively defined on QBFs as:

∥x∥I = I(x) if x ∈ V

28

3.1 The Structure of Quantified Boolean Formulas

∥¬s∥I =

{
T, if ∥s∥I = F
F, otherwise.

∥s ∨ t∥I =

{
T, if ∥s∥I = T or ∥t∥I = T
F, otherwise.

∥s ∧ t∥I =

{
T, if ∥s∥I = T and ∥t∥I = T
F, otherwise.

∥∃x. s∥I =

{
T, if ∥s∥I[T/x] = T or ∥s∥I[F/x] = T
F, otherwise.

∥∀x. s∥I =

{
T, if ∥s∥I[T/x] = T and ∥t∥I[F/x] = T
F, otherwise.

Based on QBF-interpretations, validity and satisfiability of QBFs is defined in
the same way as the for Hᴏᴌ formulas:

Definition 3.1.3 (Status of Quantified Boolean Formulas). A QBF s is valid, if
∥s∥I = T for all QBF-interpretations I. A QBF is satisfiable, if there is a QBF-
interpretation I, such that ∥s∥I = T.
A QBF which is not valid is called counter satisfiable and a QBF which is not

satisfiable is unsatisfiable.
If a QBF s is valid, then ¬s is unsatisfiable. Two QBFs s, t are logically equiv-

alent (s ≡ t) if ∥s∥I = ∥t∥I for all QBF-interpretations I.
Since the set of variables is countable infinite, there are infinitely many in-

terpretations. However only those that differ on the free variables appearing
in a formula really matter:

Lemma 3.1.1. Given a QBF s and two QBF-interpretations I1 and I2, such that
I1(x) = I2(x) for all x ∈ Fs, then ∥s∥I1 = ∥s∥I2 .

This lemma can easily be shown by a structural induction over the structure
of QBFs. As consequence of this lemma, we know that the interpretation does
not matter for closed QBFs (formulas without free variables) and that validity
and satisfiability coincides in this case. Furthermore, a QBF swith free variables
x1, x2, . . . , xn is satisfiable if and only if the QBF ∃x1.∃x2. . . . ∃xn. s is valid.
Every QBF can be translated into a logically equivalent formula in conjunctive

normal form. The description given here is loosely based on the description
presented by Büning and Bubeck (2009). It is customary to first assume the

29

3 Quantified Boolean Formulas

formula is in Negative Normal Form (NNF) . A formula is in negative normal
form if negation only occurs immediately in front of variables. The NNF of
any QBF can be constructed by using the following rules:

¬¬s ≡ s

¬(s ∨ t) ≡ ¬s ∧ ¬t ¬(∀x. s) ≡ ∃x.¬s
¬(s ∧ t) ≡ ¬s ∨ ¬t ¬(∃x. s) ≡ ∀x.¬s

After constructing the NNF, we construct the prenex form. A QBF s is in prenex
form, if it has the form Q1x1. Q2x2. . . . Qnxn. t with Qi ∈ {∀,∃} where t is
quantifier free and in NNF. We call Q1x1. Q2x2. . . . Qnxn. the prefix and t the
matrix of the formula in ᴄNF. While the prenex form can easily be constructed
by lifting the quantifiers from inside of conjunctions and disjunctions to the
outside, one has to pay attention to variables being bound multiple times in
different subterms. For example, the term (∀x. s)∨ (∀x. t) is not equivalent to
∀x. (s∨t) if x appears free both in s and t. To solve this, one can rename bound
variables first, such that they are never bound by more then one quantifier.
This can easily be done and we will from now on assume that this has been
done. Formulas that have this property are called cleansed. In practice, there
are differed strategies to construct the prenex form which have measurable
influence on the reasoning performance of QBF solvers. For an overview see
Egly et al. (2004).
After the prenex form has been constructed, the formula can be transformed

into a formula in conjunctive normal form (ᴄNF). A formula is in ᴄNF, if it is
in prenex normal form and the matrix is a conjunction of clauses.
To naïvely construct the ᴄNF from the NNF the distributive laws s∨(t∧u) ≡

(s ∨ t) ∧ (s ∨ u) and s ∧ (t ∨ u) ≡ (s ∧ t) ∨ (s ∧ u) can be used. This
method, however, can lead to a QBF in ᴄNF which is exponentially longer then
the original formula. To avoid this problem one can introduce new variables
recursively as names for subterms, replacing subterms with their names and
adding terms equating the now simplified terms with their new names. As a
last step, the conjunction of the equivalency terms is formed. This method
was first described by Tseitin 1983. Since new variables are introduced, the
resulting formula is not logically equivalent to the original one, but is satisfiable
if and only if the original formula is. Overall we get:
Lemma 3.1.2. Any quantified Boolean formula s can be transformed into a
cleansed formula t in ᴄNF which is satisfiable if and only if s is satisfiable. The
time to construct t and the length of t is linear in the length of s.
Since in formulas in ᴄNF negation only appears directly in front of variables,

we will call variables (xi) and negated variables (¬xi) literals. If l is a literal,

30

3.1 The Structure of Quantified Boolean Formulas

then l̄ is the negated literal i.e. if l = xi then l̄ = ¬xi and if l = ¬xi then
l̄ = xi. Obviously ¯̄l = l. We will use the variables x1, x2, . . . for variables
bound by the universal quantifiers and y1, y2, . . . for existentially quantified
variables. We write var(l) for the variable of a literal. I.e. var(x) = x and
var(¬x) = x. Furthermore, a literal l is a ∀-literal, if var(l) is bound by a
universal quantifier. On the other hand, a ∃-literal l is a literal with var(l)
bound by an existential quantifier. We express the polarity of a literal as pol(l).
That means, that pol(x) = T and pol(¬x) = F.
Deciding satisfiability of QBFs is solvable in polynomial space and ᴘSᴘᴀᴄᴇ-

complete. There is a close correspondence between QBFs and the polynomial-
time hierarchy. The complexity depends on the number of quantifier alterna-
tions in the prefix.

Definition 3.1.4 (Prefix Type of Quantified Boolean Formulas). A QBF which
is propositional has prefix typeΣ0 = Π0 (empty prefix). If a formula s has prefix
type Σn, then the formula ∀x1. . . . ∀xm. s is of type Πn+1. If a formula s has
prefix type Πn, then the formula ∃y1. . . .∃ym. s is of type Σn+1.

The correspondence between QBFs and the polynomial-time hirachy is:

Theorem 3.1.3. For k ≥ 1, the satisfiability problem for QBFs with prefix type
Σk is ΣP

k -complete, and for formulas with prefix type Πk, it is ΠP
k -complete

(cf. Büning and Bubeck 2009).

The class ΣP
k is the class of all problems which can be decided in polynomial

time by a non-deterministic Turing machine with the help of a ΣP
k−1-oracle.

A C-oracle is a subroutine which allows the program to solve a problem in
the complexity class C in constant time. The class ΠP

k contains every problem
whose complement is in ΣP

k . Furthermore, ΣP
1 = NP and ΠP

1 = coNP .
While we only consider classical QBF in this work, intuitionistic QBF has some

applications too. In fact, it corresponds to the type system System F ¹. Since
the type inhibition problem for System F is undecidable, this also means that
the satisfiability of intuitionistic QBFs is undecidable.

RᴇSᴏᴌᴜᴛIᴏN FᴏR QᴜᴀNᴛIfiᴇᴅ BᴏᴏᴌᴇᴀN FᴏRᴍᴜᴌᴀS
Resolution for QBFs was first introduced by Büning, Karpinski, and Flogel
(1995). In contemporary literature resolution for QBFs is often called Q-resolu-
tion. This emphasizes the explicit handling of universally quantified variables.

1 See this blog post by Aaron Stump: https://queuea9.wordpress.com/2011/03/24/
quantified-boolean-conundrum/.

31

https://queuea9.wordpress.com/2011/03/24/quantified-boolean-conundrum/
https://queuea9.wordpress.com/2011/03/24/quantified-boolean-conundrum/

3 Quantified Boolean Formulas

Alternatively, it is possible to use propositional resolution together with instan-
tiation of the universally quantified variables. See Janota and Marques-Silva
(2015) for a proof theoretic comparison.
As in the case of Rᴜᴇ-resolution, Q-resolution attempts to show the unsatis-

fiability of a problem by deriving the empty clause. To show the validity of
an arbitrary QBF the formula is first negated and then transformed into ᴄNF.
The Q-resolution rule is:

C ∨ l D ∨ l̄ l is an ∃-literal R(Q-Res)
(R∀(C) ∨R∀(D)) \ {l, l̄}︸ ︷︷ ︸

not tautological

As indicated by the first rule, Q-resolution works by removing complemen-
tary ∃-literals as long as the resulting clause is not tautological. A clause is
a tautological if it cointains two complementary literals. Furthermore, Q-res-
olution performs universal reduction as indicated by R∀(.). Given a clause C,
R∀(C) is the clause after removing all ∀-literals which are not before any ∃-
literal in the clause. A literal l1 is said to be before a literal l2, if the variable of
l1 occurs in the prefix left of the variable of l2. If l1 is before l2, we will write
l1 < l2.
In other words, universal reduction removes all universally quantified vari-

ables which no existentially quantified variables depend on. Since a clause
consisting only of non-complementary ∀-literals is always false, deriving such
a clause is enough to finish the proof. If the resulting clause, however, would
be tautological, the Q-resolution rule is not applicable. Not only are tautolog-
ical clauses useless to finish the proof, they are harmful in combination with
universal reduction².
Consider the formula

∃y1.∀x. ∃y2. y1 ∧ (¬y1 ∨ x ∨ y2) ∧ (¬x ∨ ¬y2).
This formula is valid and therefore Q-resolution should not be able to derive the
empty clause. Consider, however, the following derivationwhere a disallowed
tautology is generated:

y1

¬y1 ∨ x ∨ y2 ¬x ∨ ¬y2
(R∀(¬y1 ∨ x ∨ y2) ∨R∀(¬x ∨ ¬y2)) \ {y2,¬y2}

R(Q-Res′)¬y1 ∨ x ∨ ¬x
(R∀(y1) ∨R∀(¬y1 ∨ x ∨ ¬x)) \ {y1,¬y1} R(Q-Res)

{}
2 Martin Suda pointed out this subtlety in a personal conversation. As he noticed, first-order
(and higher-order) resolution does allow tautologies. However in those cases unification does
block the removal of tautologies.

32

3.1 The Structure of Quantified Boolean Formulas

The first resolution step generates the tautology ¬y1 ∨ x ∨ ¬x. Universal
reduction is unable to delete the variable x from this clause, because y2 is still
dependent on it. In the second resolution step, with y1, the tautology is re-
moved by universal reduction which is obviously unsound.
While universal reduction can be applied as a standard simplification rule, it

is also necessary for the completeness of Q-resolution (cf. Büning and Bubeck
2009).

FRᴏᴍ QᴜᴀNᴛIfiᴇᴅ BᴏᴏᴌᴇᴀN FᴏRᴍᴜᴌᴀS ᴛᴏ HIGHᴇR ORᴅᴇR LᴏGIᴄ
We will now show that QBFs correspond to the QBF fragment of Hᴏᴌ. The
translation between the two formalisms is straightforward.

Definition 3.1.5 (Translation from QBF to Hᴏᴌ). The function ρ from QBF
formulas to Hᴏᴌ formulas is defined recursively:

ρ(xi) = xio ρ(¬s) = ¬o→oρ(s)

ρ(s ∨ t) = ρ(s) ∨o→o→o ρ(t) ρ(s ∧ t) = ρ(s) ∧o→o→o ρ(t)

ρ(∃xi. s) = ∃xio. ρ(s) ρ(∀xi. s) = ∀xio. ρ(s)

By definition 3.0.4, all formulas generated by ρ are in the QBF fragment of
Hᴏᴌ. Furthermore, the function is invertible and the inverse is defined on all
formulas of the QBF fragment. Therefore, this function is a bijection between
QBFs and the QBF fragment of Hᴏᴌ.
The satisfiability of the two formalisms corresponds:

Theorem 3.1.4. Let s be an arbitrary QBF, then there is an interpretationM
and variable assignment σ such that ∥ρ(s)∥M,σ = S if and only if there is a
QBF-interpretation I, such that ∥s∥I = S where S ∈ {T,F}.

Proof. Given any QBF-interpretation I, let σI : xio 7→ ∥xi∥I be the correspond-
ing variable assignment . Since no formula in the QBF fragment contains vari-
ables which are not of type o, this assignment is well defined for all formulas
in the QBF fragment. Furthermore, we can choose an arbitrary Hᴏᴌ interpreta-
tion, since the domain will always contain both truth values and the functions
for the logical operators.
Given an interpretationM and a variable assignment σ, then the correspond-

ing QBF-interpretation Iσ is defined as: Iσ : xi 7→ σ(xio).
Now first assume a QBF s and a QBF-interpretation I, such that ∥s∥I = S.

We have to show that ∥ρ(s)∥M,σI = S. This can be shown by induction over
the structure of QBFs.

33

3 Quantified Boolean Formulas

As the base case for the induction we have to consider terms which are just
variables. By definition the corresponding interpretation will assign the same
value to the mapped Hᴏᴌ variable in this case.
Now we do a case distinction on the topmost operator:

• If s = ¬t and
1. ∥¬t∥I = T, then ∥t∥I = F and by applying the induction hypothesis
∥ρ(¬t)∥M,σI = ∥¬ρ(t)∥M,σI = I(¬)(∥ρ(t)∥M,σI) = I(¬)(F) = T.

2. ∥¬t∥I = F, then ∥t∥I = T and ∥ρ(¬t)∥M,σI = I(¬)(T) = F

• If s = t ∨ u and
1. ∥t∨u∥I = T, then without loss of generality ∥t∥I = T and by induc-

tion hypothesis ∥ρ(t ∨ u)∥M,σI = I(∨)(∥ρ(t)∥M,σI , ∥ρ(u)∥M,σI) =
I(∨)(T,) = T.

2. ∥t ∨ u∥I = F, then ∥t∥I = F and ∥u∥I = F. We get by induc-
tion hypothesis ∥ρ(t ∨ u)∥M,σI = I(∨)(∥ρ(t)∥M,σI , ∥ρ(u)∥M,σI) =
I(∨)(F,F) = F.

• If s = t ∧ u and
1. ∥t ∧ u∥I = T, then ∥t∥I = T and ∥u∥I = T. We get by induc-

tion hypothesis ∥ρ(t ∧ u)∥M,σI = I(∧)(∥ρ(t)∥M,σI , ∥ρ(u)∥M,σI) =
I(∧)(T,T) = T.

2. ∥t∧u∥I = F, then without loss of generality ∥t∥I = F and by induc-
tion hypothesis ∥ρ(t ∧ u)∥M,σI = I(∧)(∥ρ(t)∥M,σI , ∥ρ(u)∥M,σI) =
I(∧)(F,) = F.

• If s = ∃xi. s and
1. ∃xi. s = T: Then there is some S ∈ {T,F}, such that ∥s∥I[S/x] = T

and we get ∥ρ(s)∥M,σI[S/x] = T = ∥ρ(∃xi. s)∥M,σI .
2. ∃xi. s = F: Then ∥ρ(s)∥M,σI[S/x] = ∥s∥I[S/x] = F for both S ∈
{T,F} and therefore ∥ρ(∃xi. s)∥M,σI = F.

• If s = ∀xi. s and
1. ∀xi. s = T: Then ∥ρ(s)∥M,σI[S/x] = ∥s∥I[S/x] = T for both S ∈
{T,F} and therefore ∥ρ(∀xi. s)∥M,σI = T.

2. ∀xi. s = F: Then there is some S ∈ {T,F}, such that ∥s∥I[S/x] = F
and we get ∥ρ(s)∥M,σI[S/x] = F = ∥ρ(∀xi. s)∥M,σI .

34

3.2 The Solving Pipeline

Constructing the QBF-interpretation from a given Hᴏᴌ interpretation and vari-
able assignment is similar.

Theorem 3.1.4 covers satisfiability and counter satisfiability. Therefore, we
get as an immediate result:

Corollary 3.1.5. Let s be an arbitrary QBF, then ρ(s) is satisfiable if and only
if s is.

Since validity of a formula is equivalent to the unsatisfiability of its negation
and for all quantified Boolean formulas ρ(¬s) = ¬o→oρ(s), theorem 3.1.4 also
shows:

Corollary 3.1.6. Let s be an arbitrary QBF, then ρ(s) is valid if and only if s
is.

3.2 The Solving Pipeline
After introducing QBFs in the last section, we will have a look at state of the
art QBF solving. What the ᴄᴀSᴄ is for Hᴏᴌ provers, is QBFᴇᴠᴀᴌ for QBF solvers.
The latest iteration of this competitive evaluation, QBFᴇᴠᴀᴌ’16, was part of the
Sᴀᴛ 2016 conference in Bordeaux, France. See the report by Pulina (2016)
and the web page of QBFᴇᴠᴀᴌ³ for an extensive description of the competition.
The competition featured multiple tracks. Amongst them are tracks for QBFs
in prenex ᴄNF, for QBFs in prenex non-ᴄNF form, and for proof producing
solvers.
Overall 22 systems participated in the evaluation, some of them in multiple

configurations for a total of 44 systems. The prenex ᴄNF track featured 12 sys-
tems in overall 19 configurations⁴. Of those 12 systems all, but the two systems
which do not reason on prenex ᴄNF formulas (ᴀIGSolve and Ghosttextscq), in-
tegrate a preprocessing tool in at least one configuration. Therefore, we will
first describe the three systems which solved the most problems in the prenex
ᴄNF track and then discuses the used preprocessing tools.

RAReQS by Janota, Klieber, et al. (2012) is based on Counterexample Ab-
straction Refinement (ᴄᴇGᴀR). The solver step by step expands the for-
mula into a propositional formula by replacing variables with Boolean

3 http://www.qbflib.org/index_eval.php
4 The prenex ᴄNF track originally had 24 entrants. Some systems, however, have been discarded
from the results. See Pulina (2016) for details.

35

http://www.qbflib.org/index_eval.php

3 Quantified Boolean Formulas

constants. For existentially quantified variables a disjunction, for uni-
versally quantified variables a conjunction is introduced. The resulting
propositional formula can then be solved by a Sᴀᴛ solver. To mediate the
exponential growth of the formulas generated by this procedure, the sys-
tem expands only a selected subset of the variables. This subset is called
an abstraction. The solver then uses solutions for the propositional for-
mulas induced by a given abstraction as candidate solutions. Candidate
solutions are not necessary solutions for the original problem, but the
solver uses counterexamples for candidate solutions to refine the abstrac-
tion. The version of RᴀReQS submitted to QBFᴇᴠᴀᴌ’16 uses the preprocess-
ing tool BᴌᴏQQᴇR. RᴀReQS solved 640 of 825 problems.

QSTS is based on nested Sᴀᴛ solving. The solver first applies a tool to trans-
form the input problem into an internal Sᴀᴛ-ᴛᴏ-Sᴀᴛ format while apply-
ing various transformations and a structure extraction algorithm. Then
the Sᴀᴛ-ᴛᴏ-Sᴀᴛ solver is called. This tool is a general purpose Sᴀᴛ solver
that extends classical propositional satisfiability with nesting of Sᴀᴛ solv-
ing (see Bogaerts, Janhunen, and Tasharrofi 2016). The most successful
configuration of QSᴛS used BᴌᴏQQᴇR as a preprocessor and solved 613 of
825 problems.

DepQBF by Lonsing and Biere (2010) is a search based QBF solver. The search
procedure guesses variable assignments and then propagates assignments
necessary implied by the guessed assignment. If a contradiction is found,
the procedure backtracks the implication process and tries another assign-
ment. A number of techniques are used to speed this process up, most
notably the addition of clauses found contradictory to exclude new, but
ultimately unsatisfying assignments early on. Overall the algorithm im-
plemented by ᴅepQBF is Qᴅᴘᴌᴌ with conflict-driven clause and solution-
driven cube learning. As the name suggests, it is an extension of the
successful ᴅᴘᴌᴌ approach.
While some configurations of ᴅepQBF, which participated in QBFᴇᴠᴀᴌ’16
use the BᴌᴏQQᴇR preprocessing tool, version 5.0 of ᴅepQBF also supports
the use of the preprocessing technique blocked clause elimination dur-
ing reasoning (see Lonsing, Bacchus, et al. 2015). The most successful
configuration of ᴅepQBF solved 603 of 825 problems.

While the top three QBF solvers all use quite different solving techniques,
they all used the preprocessing tool BᴌᴏQQᴇR. This indicates that competitive
QBF solving relies on a pipeline approach.

36

3.3 Dependently Quantified Boolean Formulas

First, the problem is processed by one, or multiple preprocessing tools. The
preprocessing tools usually accept the problem in ᴄNF prenex form using a
standardized input format. The format used for the competition is the QᴅIᴍᴀᴄS
format. A description of the QᴅIᴍᴀᴄS format can be found on page 73. The
output of the preprocessing tool is a satisfiability-equivalent problem which
again is in the QᴅIᴍᴀᴄS format. Secondly, the preprocessed file is consumed
by the solver proper which outputs the status of the problem.
While the preprocessing tool BᴌᴏQQᴇR is widely used, it is not the only pre-

processing tool used by systems which participated in QBFᴇᴠᴀᴌ’16. The HIQQᴇR
system used the two preprocessors ᴘᴌᴏᴅᴅᴇR and ᴇQXBF (cf. Janota, Jordan, et
al. 2016). In one of its configurations the QSᴛS tool uses BRᴇᴀᴋIᴅ (Devriendt,
Bogaerts, and Bruynooghe 2014), a symmetry breaking tool for propositional
problems which has been extended to QBF. This particular configuration, how-
ever, has been omitted from the result because it reported discrepancies. Fi-
nally, the preprocessing tool sQueezeBF (Giunchiglia, Marin, and Narizzano
2010) has been coupled with the ᴀqua, ᴀQᴍᴇ, and StruQS system.
The BRᴇᴀᴋIᴅ tool is developed publicly⁵ and BᴌᴏQQᴇR is available on its web

page⁶. We could not find publicly available versions of the other mentioned
preprocessing tools.
As the name BᴌᴏQQᴇR indicates, the main preprocessing technique it uses

is Quantified Blocked Clause Elimination (QBᴄᴇ) (Biere, Lonsing, and Seidl
2011). It also implements a wide variety of other preprocessing techniques and
recent versions can produce a proof output in the QRᴀᴛ format (Heule, Seidl,
and Biere 2014). We will give a general overview on some preprocessing
techniques for QBFs in subsection 4.1.

3.3 Dependently Quantified Boolean Formulas
Dependently Quantified Boolean Formulas (ᴅQBF) are a generalization of QBF
which does not form a fragment of Hᴏᴌ. ᴅQBFs, however, can be easily trans-
lated to satisfiability equivalent Hᴏᴌ formulas. Preprocessing techniques which
have been generalized from QBF solving to ᴅQBF solving are good candidates
for lifting to Hᴏᴌ.
As we discussed in the previous sections, the variables in the quantifier prefix

of a QBF in prefix normal form are linearly ordered. One can drop this restric-
tion and extend the syntax with a way to explicitly declare the dependencies of
the existentially quantified variables from the universally quantified variables.

5 at: https://bitbucket.org/krr/breakid
6 at: http://fmv.jku.at/bloqqer/

37

https://bitbucket.org/krr/breakid
http://fmv.jku.at/bloqqer/

3 Quantified Boolean Formulas

This extension of QBF was first defined by Peterson and Reif (1979) to model
games with partially hidden information. Their definition of ᴅQBFs is re-
stricted to formulas in prenex normal form and while it is straightforward to
define the syntax of arbitrary ᴅQBFs, we follow their definition:

Definition 3.3.1 (DependentlyQuantified Boolean Formulas). The ᴅQBFs are
formulas of the form

∀x1.∀x2. . . . ∀xn.∃y1(xl11 , xl21 , . . . , xln1
1
). . . . ∃ym(xl1m , . . . , xlnm

m
).Φ

where 1 ≤ lji ≤ n and Φ is a propositional formula with the free variables
x1, x2, . . . , xn, y1, y2, . . . , ym.

In this new formulation, the existentially quantified variables carry the list
of universally quantified variables with them. This obviously makes multiple
quantifier alternations superfluous. Furthermore, the order and multiplicity of
the variables denoting the dependencies does not matter. Therefore, for quan-
tifiers of the form ∃yi(xl1i , xl2i , . . . , xlni

i
). . . . we can collect universally quanti-

fied variables in a set Dyi = {xl1i , xl2i , . . . , xlni
i
}. The set Dyi is the dependency

set of the existentially quantified variable yi.
Every QBF can be expressed as a ᴅQBF by collecting all universally quantified

variables that appear before an existentially quantified variable yi in the prefix
into the dependency set Dyi . So ∀x. ∃y. (¬y ∨ x) ∧ (¬x ∨ y) corresponds to
∀x.∃y(x). (¬y∨ x)∧ (¬x∨ y) and if we switch the quantifiers to ∃y.∀x. (¬y∨
x)∧ (¬x∨ y) the corresponding ᴅQBF changes to ∀x.∃y(). (¬y∨ x)∧ (¬x∨ y).
Not all ᴅQBFs correspond to QBFs. Consider for example the formula

∀x1, x2.∃y1(x1). ∃y2(x2). (y1 ∨ x1) ∧ (¬y1 ∨ ¬x1) ∧ (y2 ∨ x2) ∧ (¬y2 ∨ ¬x2).

In general, evaluating ᴅQBFs is harder than evaluating QBFs. Peterson and
Reif (1979) have shown, that evaluating ᴅQBFs is NᴇXᴘᴛIᴍᴇ-complete. Fur-
thermore, ᴅQBFs can be used to solve the partial equivalence checking problem.
The task of this problem is to extend a only partially defined logical circuit to
match the functionality of a fully specified circuit (see Gitina, Reimer, et al.
2013).
To define the semantic of ᴅQBF, one can use Skolem functions. Since this

directly leads to the embedding of ᴅQBF into Hᴏᴌ, we will forgo the definition
of the semantic of ᴅQBF and instead directly give the embedding into Hᴏᴌ.
First we need the concept of a Skolem function.

Definition 3.3.2 (Skolem Function for ᴅQBFs). Let t be an arbitrary ᴅQBF and
yi a existentially quantified variable of t. Furthermore, let Dyi = {xl1 , xl2 , . . . ,

38

3.3 Dependently Quantified Boolean Formulas

xln} be the dependency set of yi in t where l1 < l2 < · · · < ln. I.e. we fix a
order of the universally quantified variables appearing in the dependency set.
Then σt is the following mapping from existentially quantified variables to
Hᴏᴌ terms:

σt : yi 7→ tsk i
o→···→o︸ ︷︷ ︸

n times

→o x
l1
o x

l2
o . . . xlno .

The fresh function symbol tsk i is the Skolem function of yi in t.
Definition 3.3.3 (Translation from ᴅQBF to Hᴏᴌ). Let t be a ᴅQBF in prenex
form, then

ρ(∀x1, x2, . . . , xn.∃y1(xl11 , . . . , xln1
1
), . . . , ym(xl1m , . . . , xlnm

m
).Φ) =

∃ tsk 1, . . . , tskm.∀x1o, x2o, . . . , xno . ρ′(Φ)
is the translation function into a Hᴏᴌ formula. The function ρ′ translates the
matrix and is defined recursively as:

ρ′(xi) = xio ρ′(s ∨ t) = ρ′(s) ∨o→o→o ρ
′(t)

ρ′(yi) = σt(yi) ρ′(s ∧ t) = ρ′(s) ∧o→o→o ρ
′(t)

ρ′(¬s) = ¬o→oρ
′(s)

In other words, we translate a ᴅQBF into Hᴏᴌ by replacing existentially quan-
tified variables with functions that calculate satisfying assignment to the exis-
tentially quantified variables from the universally quantified variables. A ᴅQBF
is satisfiable if such functions exist. Therefore, a ᴅQBF t is true if and only if
ρ(t) is valid.

SYSᴛᴇᴍS FᴏR DQBF SᴏᴌᴠING
Recently some systems which solve ᴅQBF formulas have emerged. For a rela-
tively recent overview see Kovásznai (2015).
A first attempt at developing an efficient general purpose ᴅQBF solver has

been made by Fröhlich, Kovásznai, and Biere (2012). Their approach was to
develop ᴅᴘᴌᴌ-style search based algorithm and to lift various successful tech-
niques from Sᴀᴛ solving to ᴅQBF solving. The authors, however, concluded
that «it does not perform very well».
Another approach emerges from the observation that Effectively Proposi-

tional Logic (ᴇᴘR), a fragment of first-order logic, is also NᴇXᴘᴛIᴍᴇ-complete.
A solving approach for ᴇᴘR formulas is the Inst-Gen calculus. This calculus
combines unification to generate clause instantiations with an abstraction re-
finement loop. The iᴅQ system⁷ (Fröhlich et al. 2014) implements this calculus

7 available at: http://fmv.jku.at/idq/

39

http://fmv.jku.at/idq/

3 Quantified Boolean Formulas

with specific low level optimizations for the Boolean domain, such as bit mask
operations for unification. This system was the first publicly available solver
for ᴅQBF.
The HQS system (Gitina, Wimmer, et al. 2015) is a ᴅQBF solver based on

quantifier elimination. A universally quantified variable x can be removed
from the dependency set of an existentially quantified variable by forming
the conjunction of the formula where x is instantiated once with a constant
which is always true and once with a constant which is false. The HQS system
attempts to reduce the ᴅQBF input problem to a QBF problem by systematically
eliminating variables. To minimize the number of necessary expansions the
HQS system utilizes a partial ᴍaxSᴀᴛ solver.
Furthermore, some preprocessing techniques have been lifted from QBF solv-

ing to ᴅQBF by Wimmer, Gitina, et al. (2015) and subsequently been imple-
mented in ᴅQBF preprocessing tool for HQS (Wimmer, Reimer, et al. 2017).

40

4 Preprocessing Techniques
In this chapter we will introduce multiple preprocessing techniques for Hᴏᴌ
which are inspired by QBF and ᴅQBF preprocessing techniques.
As outlined in section 3.2, modern QBF solving systems employ various pre-

processing tools. Thus, we give an overview of preprocessing techniques used
in QBF and ᴅQBF solving in section 4.1, before moving to Hᴏᴌ in the subsequent
section.
Section 4.2 discusses universal reduction in the context of Hᴏᴌ. We already

introduced this method as part of Q-resolution in the introduction chapter and
will describe its extension to Hᴏᴌ.
Subsequently, section 4.3 will discuss ways to detect constant literals. In the

context of QBF solving a literal is constant, if it can be replaced with a constant
in all clauses. Pure literals, i.e. literals which only appear with one polarity are
constant. In the context of Hᴏᴌ we will add constants as unit clauses.
One of the central preprocessing techniques for QBF is Quantified Blocked

Clause Elimination (QBᴄᴇ). The preprocessing system BᴌᴏQQᴇR is named after
this preprocessing method (cf. Biere, Lonsing, and Seidl 2011). While we have
a look at QBᴄᴇ in the context of QBF solving as part of section 4.1, we will also
discuss an adaption to Hᴏᴌ in section 4.4.
Finally, in section 4.5 we will present a preprocessing technique which is

not an adaption of a QBF, or ᴅQBF preprocessing technique. Instead, we take
inspiration from the encoding of QBF formulas into first-order logic and hy-
pothesize that we can adapt this encoding to accelerate reasoningwith Boolean
literals by delaying primitive substitution.
The discussion in the chapter is a theoretical one, but we also implemented

all the techniques presented here as part of the Leo-III theorem prover. This
implementation alongside an empirical evaluation is discussed in the next chap-
ter.

4.1 Preprocessing for QBF and DQBF
In this section we give an overview of current preprocessing techniques used
for QBF and ᴅQBF problems. Instead of attempting to give a full survey over all

41

4 Preprocessing Techniques

available preprocessing techniques, we rely on two useful sources.
The first source is the description of QRᴀᴛ by Heule, Seidl, and Biere (2014).

The QRᴀᴛ system is used to represent poofs of deductions conducted during
preprocessing of QBF problems. After concluding the preprocessing process,
the generated QRᴀᴛ proofs can be verified by a special proof checking tool.
At the heart of QRᴀᴛ are three Quantified Resolution Asymmetric Tautology
rules. According to the authors, those three rules can be used to «efficiently
express all preprocessing techniques used in state-of-the-art preprocessors».
Therefore, this publication necessarily gives an overview of most currently
used preprocessing techniques for QBF solving.
Secondly, we rely on the lifting of multiple QBF preprocessing techniques

to ᴅQBF preprocessing by Wimmer, Gitina, et al. (2015). Not only are these
techniques good candidates for further lifting to Hᴏᴌ, their presentation and
categorization is also very insightful.

PRᴇᴘRᴏᴄᴇSSING TᴇᴄHNIQᴜᴇS IN ᴛHᴇ CᴏNᴛᴇXᴛ ᴏF QRAT

In the presentation of QRᴀᴛ Heule, Seidl, and Biere (2014) distinguished be-
tween three types of preprocessing rules. Clause Elimination Rules are used to
remove clauses, while preserving unsatisfiability. Clause Modification Rules, on
the other hand, changes clauses by adding or removing literals. Finally, Clause
Addition Rules are used to add new clauses to the problem.
A rule in the first category is the elimination of clauses which are tautological.

Clauses which contain a literal and its negation at the same time are tautolog-
ical and can be removed. Furthermore, a clause which is a subset of another
clause is subsumed by that clause and can be removed. Clauses consisting of
only an ∃-literal are also superfluous and can be removed safely. Finally, clauses
which fulfill certain properties are called blocked. Removal of these clauses is the
(Quantified) Blocked Clause Elimination (QBᴄᴇ) technique. Since this technique
is very successful, we will discuss it separately later.
As discussed above, universal reduction allows the removal of certain ∀-

literals from clauses. Hence, this is a clause modification rule. Moreover, if
the problem contains two clauses C ∨ l and D ∨ l̄ where C ⊆ D, then after ap-
plying Q-resolution the resolvent subsumes C. Using this insight, the strength-
ening rule modifies C by removing l. The Unit Literal Elimination rule can
be used to remove clauses containing l and occurrences of l̄ if l is an ∃-literal
and occurs as a clause by itself and Universal Pure Literal Elimination removes
∀-literals if it occurs in only one polarity. Covered Literal Addition adds literals
that occur in all non-tautological resolvents of a clause to that clause. Equiva-
lence Replacement replaces literals with literals which are equivalent with them.

42

4.1 Preprocessing for QBF and DQBF

Two literals l and k are equivalent, if the two clauses l ∨ k̄ and l̄ ∨ k are part of
the problem.
The two clause addition rules both remove variables. Variable Elimination re-

moves an existentially quantified variable, by replacing clauses containing this
variables by their non-tautological resolvents. Secondly, the Universal Expan-
sion rule removes innermost ∀-literals by duplicating and modifying clauses.

PRᴇᴘRᴏᴄᴇSSING TᴇᴄHNIQᴜᴇS LIFᴛᴇᴅ ᴛᴏ DQBF
The difference between QBFs and ᴅQBFs is that ᴅQBFs admits quantifier rela-
tions which do not form a total order. This translates to preprocessing tech-
niques. Those QBF preprocessing techniques, where the implicit dependency
(«left of») can be substituted by an explicit dependency are good candidates for
a translation to ᴅQBF.
When describing preprocessing for ᴅQBF, Wimmer, Gitina, et al. (2015) start

with backbones,monotonic, and equivalent variables. Backbone variables are vari-
ables that will result in an unsatisfiable ᴅQBF when replaced with a constant.
And for a ᴅQBF ϕ a variable v is monotonic, if either ϕ[F/v] ∧ ¬ϕ[T/v] or
ϕ[T/v] ∧ ¬ϕ[F/v] is unsatisfiable. Both definitions are generalizations of unit
and pure literals as discussed before and either indicate an unsatisfiable prob-
lem, or can be replaced by a constant. In fact, unit literals or pure literals are
two purely syntactic criterions for detecting backbone or monotonic variables,
respectively. A further criterion utilizes the binary implication graph. This is
the graph formed by taking the literal as nodes and adding edges for all impli-
cations l→ m in the problem¹. Not only can this graph be used to give some
syntactic criterion for backbone and monotonic literals, it can also be used to
find equivalent literals. Furthermore, the authors mention, that Sᴀᴛ solvers
can be utilized to find backbone and monotonic literals. While this might be
untypical for QBF and ᴅQBF solving, we investigated this approach since Hᴏᴌ
problems typically have much fewer and smaller clauses.
The second type of ᴅQBF preprocessing techniques reduces the dependency

sets of variables. Again a sufficient criteria is given. This criterion utilizes the
variable-clause incidence graph, which is a bipartite graph with edges from vari-
ables to the clauses they appear in. An existential variable x then is independent
of a universal variable y if there is no path from x to y visiting only existentially
quantified variables which are dependent on the universal variable y.
Techniques resulting from proof search procedures for QBF form the third

set of ᴅQBF preprocessing techniques. This includes universal reduction, res-
1 This especially means that a clause of the form x ∨ y induces four edges: (x,¬y), (¬x, y), and
the reverse edges.

43

4 Preprocessing Techniques

olution and universal expansion. While universal reduction and resolution
together form a complete calculus for QBF, this is no longer true for ᴅQBF.
Nevertheless, resolution can be used under some condition to eliminate exis-
tential variables. Universal expansion is used to eliminate a universal variable
by duplicating the clauses and replacing the variable with the constants T and
F.
Then the authors present blocked clause elimination for ᴅQBF. They also

generalize then notion of hidden and covered literals, which are literals that
can be added to clauses without changing the status of the problem. Adding
them will increase the chance that a clause is blocked and can removed.
Finally, the structure extraction is discussed. In practice, ᴅQBF problems are

often generated from Boolean circuits or more complex expressions by clausi-
fication. Some solvers do not rely on a problem in ᴄNF. In this case, structure
extraction can be used to recover the original structure of the problem.

Bᴌᴏᴄᴋᴇᴅ CᴌᴀᴜSᴇ EᴌIᴍINᴀᴛIᴏN
Blocked Clause Elimination (Bᴄᴇ) is one of several preprocessing techniques
which utilize blocked clauses. The concept of blocked clauses has its origins
in Sᴀᴛ solving (cf. Järvisalo, Biere, and Heule 2010). It was then lifted to QBF
solving by Biere, Lonsing, and Seidl (2011) and to ᴅQBF by Wimmer, Gitina,
et al. (2015).
Beside eliminating blocked clauses, it is also possible to carefully add small

blocked clauses. This technique is called blocked clause addition and has been
shown to be useful in certain situations (Järvisalo, Heule, and Biere 2012).
We now give definitions of blocked clause as used by Wimmer, Gitina, et

al. (2015) for ᴅQBF. A clause is blocked if it contains an ∃-literal such that all
resolvents on that literal are tautological.

Definition 4.1.1 (Blocked Clause). Let Φ be a ᴅQBF, C a clause in Φ, and
l ∈ C a ∃-literal. The literal l is a blocking literal for C if for all C ′ ∈ Φ with
l̄ ∈ C ′ there is a literal m such that {m, m̄} ∈ (C ∪ C ′) \ {l, l̄} and Dm ⊆ Dl.
A clause is blocked if it contains a blocking literal.

Blocked clauses can be removed from problems without changing the satisfi-
ability status of the problem. As this is a purely syntactic criterion, it is straight-
forward to search for blocked clauses. To increase the chance of a clause being
blocked, hidden literals can be added. A literal l /∈ C is a hidden literal for C if
there is a clause {l1, . . . , ln, l̄} ∈ Φ such that {l1, . . . , ln} ⊆ C. Then replacing
C by C ∪ {l} results in a satisfiability equivalent problem. Another type of lit-
eral which can be added to clauses without changing the status of the problem

44

4.2 Universal Reduction

are covered literals. The definition of covered literals in the case ᴅQBF is a quite
technical and we instead quote a rough intuition given by Wimmer, Gitina,
et al. (2015):

If a literal k is already contained in all non-tautological resolvents
of a clause C with pivot literal l, then kmay be added to C resulting
in an equivalent formula.

Recently Kiesl et al. (2017) adapted the concept of blocked clause to first-
order logic. The authors faced the challenge of handling unification and equal-
ity. When analyzing blocked clause elimination in the context of higher-order
logic, the same difficulties arise. We discuss this generalization together with
additional challenges arising in Hᴏᴌ in section 4.4.

4.2 Universal Reduction
In section 3.1 we already introduced universal reduction as part of the Q-reso-
lution rule. Universal reduction is necessary for the completeness of Q-resolu-
tion.
Assuming a problem in ᴄNF, we can describe universal reduction as defined

by Wimmer, Gitina, et al. (2015) for ᴅQBF problems as an explicit rule:

l ∨ j1 ∨ · · · ∨ jn l is a ∀-literal, var(l) /∈ Dvar(ji)

j1 ∨ · · · ∨ jn

The meaning of the rule is: Given a clause and a ∀-literal, if none of the
existentially quantified variables in that clause depend on the variable of that
literal, then the literal can be removed from the clause. This is quite intuitive.
If all the other variables appearing in the clause are independent of the ∀-literal,
then this literal can just be set to false and therefore become irrelevant for the
truth value of the clause.
In skolemized Hᴏᴌ formulas the dependencies are explicitly present in the

terms. All the universally quantified variable an existentially quantified variable
depends on appear as arguments to the Skolem functions. Furthermore, a
more complex term depends on a universally quantified variable if the variable
appears free in that term.
Hence, the universal reduction rule for Hᴏᴌ is²:

2 This rule is slightlymore restrictive that it needs to be. If the literal in question appears multiple
times, the rule can not be applied anymore. We can, however, assume that duplicated literals
have been removed during clausification.

45

4 Preprocessing Techniques

[xo]
α ∨ [s1]

β1 ∨ · · · ∨ [sn]
βn xo /∈ Fsi R(UR)

[s1]
β1 ∨ · · · ∨ [sn]

βn

Since n ≥ 1, this rule can not derive the empty clause, even though the clause
containing only a singular Boolean variable is certainly counter-satisfiable. Ap-
plying this rule does not change the validity status of the problem:

Theorem 4.2.1 (Soundness of Universal Reduction). Let S be a skolemized
Hᴏᴌ formula. Then S is valid if and only if S ′ is. Where S ′ is S after applying
R(UR) to a clause C ∈ S.

Proof. Let C ′ be the result of applying the rule to C and l = [xo]
α ∈ C the

removed literal. We have that C ′ ⊂ C.
Assume S is counter-satisfiable. Then there is an interpretationM and a

variable assignment σ such that ∥S∥M,σ = F. Since S is of the form D1 ∧
· · · ∧ Dn ∧ C ∧ Dn+1 ∧ · · · ∧ Dm, we either have that ∥C∥M,σ = F, or that
∥C∥M,σ = T. In the first case, ∥C ′∥M,σ = F since all terms in C are false and
therefore so are the terms in C ′. In the second case, some other clause D in
S and S ′ is false and the status of C ′ does not matter. We can conclude, that
interpretation and variable assignment also falsifies S ′.
Assume S ′ is counter-satisfiable and again letM and σ be the falsifying in-

terpretation and variable assignment. The only non-trivial case is if C ′ is the
only clause falsified by this assignment and ∥l∥M,σ = T. We can define:

σ′ : v 7→


F, if v = xo and σ(xo) = T
T, if v = xo and σ(xo) = F
σ(v), otherwise.

Then, by definition ∥l∥M,σ′
= F and, since xo does not appear free in any other

term of C, we also get ∥C∥M,σ′
= F. This flip might also change to truth value

of other clauses in C too, but this does not change the conclusion that s is also
counter-satisfiable.

Listing 2 is a pseudo code implementation of the universal reduction rule.
The polarity (pol(l)) and variable (var(l)) of Hᴏᴌ literals is defined analogously
to the QBF case.

4.3 Constant Extraction
Two simple syntactic rules which are applied in QBF and ᴅQBF preprocessing
are the detection and elimination of pure and unit literals.

46

4.3 Constant Extraction

1 function UniversalReduction(M)
Input: A setM of skolemized clauses.
Output: A set R of clauses, where some contain fewer literals.

2 R← ∅
3 foreach C ∈M do
4 C ′ ← C
5 B ← {l | l ∈ C, l is either xio or ¬xio.}
6 P ← {(var(l), pol(l)) | l ∈ B.}
7 foreach l ∈ B do
8 if (var(l),¬ pol(l)) ∈ P then

// Clause is tautological and can be removed.
9 Continue in line 3.
10 else
11 F ← ∪l′∈C,l′ ̸=lFl

12 if var(l) /∈ F then
13 C ′ ← C ′ − l

14 R← R ∪ {C ′}
15 return R

Listing 2: Universal Reduction for HOL.

A pure literal is a literal which only occurs in one polarity in the whole
problem. Since existential pure literals can be replaced by the true constant,
all clauses containing pure ∃-literals can be removed. Pure ∀-literals, on the
other hand, can be removed from the clauses they appear in.
A literal l is a unit literal, if there is a clause which contains l and no other

literals. Hence, unit literals are literals which occur alone in a clause. Accord-
ingly, clauses which contain only one literal are called unit clauses. The variable
in a unit ∃-clause can be replaced by a constant and problems containing unit
∀-literals are unsatisfiable.
As described in section 4.1 backbone and monotonic variables are a more

general and semantic variant of unit and pure literals.

PᴜRᴇ LIᴛᴇRᴀᴌ DᴇᴛᴇᴄᴛIᴏN ᴠIᴀ UNIfiᴄᴀᴛIᴏN TᴇSᴛS IS UNSᴏᴜNᴅ

A first attempt of implementing pure literal detection for Hᴏᴌ might be along
the following lines:
Given an input formula so in clause form and a literal l appearing in this

47

4 Preprocessing Techniques

problem. Iterate over all clauses C and literals l′ in C. Continue if l = l′. Oth-
erwise, check if pol(l) = ¬ pol(l′). If this is the case l is not pure, nor is l′.
Finally, check if l and l′ are unifiable. Since unification for Hᴏᴌ is undecidable,
this step must be an over approximation. If the two literals are possibly unifi-
able, neither l nor l′ are pure. If no counterexample for pureness is found, l is
pure and can be added as a unit clause.
This procedure, however, is unsound in the presence of equality. Consider

for example the problem (fo→o = λx.¬x) ∧ (fo→o (gι→o a)) ∧ (gι→o a ∨ xo).
In this case, gι→o a is not unifiable with any literal in the first two clauses and
therefore could be added as a unit clause. This results in (fo→o = λx.¬x) ∧
(fo→o (gι→o a)) ∧ (gι→o a ∨ xo) ∧ (gι→oa). Note that the original problem is
satisfiable by setting xo = T and gι→o a = F. The new one, however, is no
longer satisfiable, since (λx.¬x) (gι→oa) β-reduces to ¬(gι→o a).
Overall, this approach fails because Hᴏᴌ formulas contain equality symbols

which carry semantical meaning without being explicitly axiomatized in the
input problem. Furthermore, the arbitrary nesting of function symbols and
operators is an additional challenge which must be handled by a constant ex-
traction algorithm.

4.3.1 SAT Based Constant Extraction
As discussed in section 4.1 Wimmer, Gitina, et al. (2015) mention Sᴀᴛ solving
as a procedure for detecting backbone and monotonic variables. Such a proce-
dure was described by Pigorsch and Scholl (2010). We will first describe their
algorithm, before describing our adaption to Hᴏᴌ.
Given a QBF formula t in ᴄNF. That is, t has the formQ1x1 . . . Qnxn. swhere

s is a conjunction of clauses. If for any literal l it holds that s → l, then
Q1x1 . . . Qnxn. s ∧ l is equivalent to t. In this case l is a constant literal. Since
variables which are existentially quantified in the QBF problem t are implicitely
universally quantified in s → l this procedure is only approximative. The
validity of s→ l is equivalent to the unsatisfiability of s∧¬l. Hence, a simple
procedure to search for constant literals in a problem with n variables could
make 2 × n calls to a Sᴀᴛ solver to test for unsatisfiability. One call for each
propositional variable and one call for the negated variable.
This can be optimized. Should a problem handed to the Sᴀᴛ solver be sat-

isfiable – which will be the case for all literals which are not constant – the
solver returns a model for the formula. This model can be used to avoid fu-
ture checks. Given a model for s ∧ li which assigns T to the literal lj (i ̸= j),
then this model will also be a model for s ∧ lj . Hence, the algorithm can be
improved by maintaining a queue of literals yet to be checked. If a generated

48

4.3 Constant Extraction

problem is satisfiable with a model which makes a literal l true the literal l̄ can
be removed from the queue.
Furthermore, some capabilities of modern Sᴀᴛ solvers can be exploited. Be-

fore doing the unsatisfiability checks, a model for s by itself can be computed.
After removing literals from the queue based on this model as described be-
fore, the Sᴀᴛ solver can be introduced to try the yet unused value first when
guessing assignments for variables. This increases the chance to remove literals
from the queue after the first check. Lastly, many recent Sᴀᴛ solvers support
incremental solving, which allows for the addition and removal of temporary
assumptions without the necessity to restart the whole reasoning process. All
those optimizations have been implemented in our adaption of the algorithm.

AᴅᴀᴘᴛING SAT BᴀSᴇᴅ CᴏNSᴛᴀNᴛ EXᴛRᴀᴄᴛIᴏN ᴛᴏ HOL
Our adaption to Hᴏᴌ is quite straightforward. In a first step we map all Hᴏᴌ
literals to Sᴀᴛ literals, ensuring that syntactically equal Hᴏᴌ terms get the same
literal assigned. Then we invoke the Sᴀᴛ solver as described above.
This will result in a set of constant Sᴀᴛ literals, which then can be mapped

back to Hᴏᴌ literals and added to the original input formula. To capture some
relations between equality terms we add some transitivity constraints to the
generated Sᴀᴛ problem. Before we describe this procedure, we give a more
formal definition of the translation to Sᴀᴛ:

Definition 4.3.1 (SAT Literal Mapping). A Sᴀᴛ literal mapping is a function
⌊.⌋ from a set of Hᴏᴌ terms to proportional literals, such that:

1. If ⌊S⌋ is defined for a Hᴏᴌ term S, then so is ⌊¬S⌋ and ⌊S⌋ = ⌊¬S⌋.

2. If ⌊S = T ⌋ is defined for Hᴏᴌ terms S and T , then so is ⌊S ̸= T ⌋ and
⌊S = T ⌋ = ⌊S ̸= T ⌋.

3. If ⌊S = T ⌋ is defined, then so is ⌊T = S⌋ and ⌊T = S⌋ = ⌊S = T ⌋.

4. If ⌊S ̸= T ⌋ is defined, then so is ⌊T ̸= S⌋ and ⌊T ̸= S⌋ = ⌊S ̸= T ⌋

Overall, we require that negation behaves as expected, and that the order of
terms in equations does not matter. The first requirement can be implemented
by maintaining a directory which maps Hᴏᴌ terms to Sᴀᴛ variables and by
appropriately removing and adding negations. The second requirement can
be fulfilled by ordering the terms consistently before translation. This can be
done by any total order. We choose a simple lexicographic order on terms.
We can now describe the translation from Hᴏᴌ into Sᴀᴛ:

49

4 Preprocessing Techniques

Definition 4.3.2 (SAT Mapping of Formulas). Given a Sᴀᴛ literal mapping
⌊.⌋ and a Hᴏᴌ formula S in clause form. I.e. S is of the form C1 ∧ C2 ∧ · · · ∧
Cn, where Ci are clauses and the explicit quantifiers have been removed by
Skolemization. Then the Sᴀᴛmapping ⟨S⟩ is {⌊l⌋ | l ∈ C1}∧· · ·∧{⌊l⌋ | l ∈ Cn}.

Note that the mapping removes all the quantifiers from the input formula.
This Sᴀᴛ mapping has the desired property:

Theorem 4.3.1 (Soundness of SAT Mapping). Given a Hᴏᴌ formula S of the
form as described above and a Sᴀᴛ literal mapping ⌊.⌋. If ⟨S⟩ → ⌊l⌋ is valid for
an arbitrary literal l, then S and S ∧ l are satisfiability equivalent.

To prove this, we first prove this lemma:

Lemma 4.3.2. Given a Sᴀᴛ literal mapping ⌊.⌋ and a Hᴏᴌ formula S in clause
form. Then if S is satisfiable if and only if ⟨S⟩ is satisfiable.

Proof. Assume that S is satisfiable and letM be an interpretation and σ a vari-
able assignment such that ∥S∥M,σ = T.
We use this interpretation and assignment to construct a model I for ⟨S⟩.

Let I be the mapping from propositional variables to truth values, such that
I(xi) = ∥l∥M,σ if ⌊l⌋ is a variable xi and ∥xi∥I = ¬∥l∥M,σ if ⌊l⌋ is of the form
¬xi. Since ⌊¬l⌋ = ¬⌊l⌋ this is well-defined.
For each clause C ∈ S, there is a literal l such that ∥l∥M,σ = T. By definition
∥⌊l⌋∥I = T and hence for each proportional clause there is a mapped literal
which the valuation ∥.∥I is true. Therefore, ∥⟨S⟩∥I = T.
The second statement directly follows from the first one by negation.

We can now proof theorem 4.3.1:

Proof. First note that ⟨S⟩ → ⌊l⌋ is equivalent to ¬(⟨S⟩ ∧ ¬⌊l⌋) and, by the
definition of the mappings, to ¬⟨S ∧ ¬l⟩. Therefore, ⟨S⟩ → ⌊l⌋ is valid if and
only if ⟨S ∧ ¬l⟩ is unsatisfiable and by lemma 4.3.2 the validity of ⟨S⟩ → ⌊l⌋
implies unsatisfiability of S ∧ ¬l.
Assume S is satisfiable, but S ∧ l is not. Hence, we know that for all inter-

pretationM and a variable assignment σ such that ∥S∥M,σ = T we have that
∥l∥M,σ = F. This implies that ∥¬l∥M,σ = T and therefore ∥S ∧ ¬l∥M,σ = T.
Since at least one such interpretation exists this is a contradiction to the remark
above.
The other direction is trivial, since all subsets of a satisfiable set of clauses are

satisfiable.

50

4.3 Constant Extraction

AᴅᴅING TRᴀNSIᴛIᴠIᴛY CᴏNSᴛRᴀINᴛS

The translation procedure just described disregards most of the structure of
the formula. Only the basic propositional structure is retained. We now de-
scribe a simple procedure to add some additional structural information to the
generated Sᴀᴛ problem.
Some literals in the generated Sᴀᴛ problem encode equalities between terms.

The equality relation is transitive. Consider for example the formulas s = t
and t = u, then the transitivity of equality implies that s = u holds. That is
s = t ∧ t = u → s = u is a valid Hᴏᴌ formula. Since equality is implicitly
handled by the Leo-III calculus, those clauses do not appear in the clause set
during reasoning. They, however, can be added to the generated Sᴀᴛ problem
as additional clauses.
A naïve procedure to do so would be to first collect all Sᴀᴛ literals which

encode equalities an equality set E and then add all possible transitivity con-
straints to the Sᴀᴛ problems. The generated transitivity constraints would be
formulas of form

⌊S1 = S2⌋ ∧ ⌊S2 = S3⌋ ∧ · · · ∧ ⌊Sk−1 = Sk⌋ → ⌊S1 = Sk⌋

where ⌊Si = Sj⌋ ∈ E . Those formulas can be translated to equivalent clauses
which can be added to the problem:

¬⌊S1 = S2⌋ ∨ ¬⌊S2 = S3⌋ ∨ · · · ∨ ¬⌊Sk−1 = Sk⌋ ∨ ⌊S1 = Sk⌋.

This naïve approach, however, leaves much to be desired. Given the unre-
stricted length of the constraints they might have an arbitrary, even infinite,
length. A more goal-oriented approach is needed for this problem. Efficient
ways to create transitivity constraints have been proposed by Bryant and Velev
(2000) which we adapted to the problem at hand and implemented.
In a first step, the set of equalities is represented as an undirected graph G =

(V,E). The set of nodes V is the set of all Hᴏᴌ terms³, and {S, T} ∈ E if
⌊S = T ⌋ ∈ E .
The authors then show that the set of all transitivity constraints is satisfied by

those interpretations which satisfy the transitivity constraints induced by the
chord-free cycles in the graph. A chord free cycle is a cycle [v1, v2, . . . , vk, v1]
where {vi, vj} /∈ E for any j ̸= (i+1), except i = k and j = 1. The transitivity
constraint induced by such a cycle is ⌊v1 = v2⌋ ∧ · · · ∧ ⌊vk−1 = vk⌋ → ⌊v1 =

3 Since the procedures by Bryant and Velev (2000) consider literals which encode equalities
abstractly, their set of nodes is a bounded set of natural numbers.

51

4 Preprocessing Techniques

vk⌋. Unfortunately, the number of chord-free cycles can be exponential in the
number of edges in the graph.
By adding additional derived equality literals this can be avoided. To do so,

the graph must be made chordal. A graph is chordal, if no cycle with more
than three nodes is chord-free. Making a graph chordal by adding a minimal
amount of additional edges is Nᴘ-complete, but good heuristic solutions exists.
We implemented the heuristic presented by Bryant and Velev (2000).
The heuristic starts with G0 = G and iteratively constructs Gi = (Vi, Ei)

from Gi−1 by removing a node from Gi−1 and adding edges. If in step i the
node vi is removed, edges are added to Gi for each two nodes j, k where
{j, vi} ∈ Ei−1, {k, vi} ∈ Ei−1, but {j, k} /∈ Ei−1. This procedure is iterated
until all nodes have been deleted. The final graph is G plus all edges created
during the procedure.

THᴇ ENᴛIRᴇ AᴌGᴏRIᴛHᴍ

We now give a pseudo code description of the complete algorithm. The pre-
sentation is split into two parts. Listing 3 shows the overall skeleton of the al-
gorithm, while listing 4 contains the generation of the transitivity constraints
from an equality graph.
The algorithm uses a mapping from tuples of terms to propositional variables.

Thismapping allows the representation of both equational and ordinary literals.
A tuple (l, j) represents the equation l = j. To represent ordinary literals
their partner is set to T. Hence, the tuple (l,T) is used to represent l = T,
which is equivalent to just l. In fact, the algorithm will generate literals of the
form [lo = T]α instead of [lo]α. These two forms are equivalent and the first
form is very similar to the internal representation used in Leo-III, while also
simplifying the pseudo code.
We assume that the mapping from term tuples to propositional variables

reorders the terms before requesting the variable. Hence, M(a, b) = M(b, a).
This removes the necessity to handle terms of the form S = T and T = S
differently. Any total order can be used.
Assuming a literal in the Sᴀᴛ solver means adding this literal to the Sᴀᴛ prob-

lem as a until clause for the next call to solve. The Sᴀᴛ solver then automatically
removes the assumed literal after finishing solving the problem⁴. Furthermore,
asking the Sᴀᴛ solver for a model returns the set of Sᴀᴛ literals set to T.
Line 29 in listing 3 uses a shorthand notation for expressing the polarity of a

Hᴏᴌ literal. Here [l]T means [l]tt and [l]F means [l]ff .

4 This is exactly the behavior of ᴘicoSᴀᴛ, which was used in our implementation.

52

4.3 Constant Extraction

1 function ConstantExtraction(M)
Input: A setM of skolemized clauses.
Output: A set U of new unit clauses.

2 M ← empty map from term tuples to propositional variables.
3 S ← new incremental Sᴀᴛ solver instance.
4 E ← new equality graph.
5 foreach C ∈M do
6 C ′ ← ∅
7 foreach [l]α ∈ C do
8 if l is of the form s = t then
9 T ← (s, t)
10 Add nodes s, t and the edge {s, t} to E.
11 else
12 T ← (l,T)
13 V ←M(T)
14 if V not defined then
15 V ← fresh Sᴀᴛ variable.
16 M(T)← V

17 Add V to C ′ if α = tt and ¬V otherwise.
18 Add C ′ to Sᴀᴛ solver S.
19 Add TransitivityConstraints(E, M) to S.
20 if Solve(S)=ᴜNSᴀᴛ then
21 return Input is contradictory.
22 L← {l̄ | l ∈ Model(S)}
23 Introduce S to try l̄ first for l ∈ Model(S).
24 while L ̸= ∅ do
25 l← an element from L.
26 Assume l in S.
27 if Solve(S)=ᴜNSᴀᴛ then
28 (s, t)←M−1(var(l))

29 N ← [s = t]¬pol(l)

30 if {N} /∈M then
31 U ← U ∪ {N}
32 else
33 L← L \ Model(S)
34 return U

Listing 3: SAT Based Constant Extraction.

53

4 Preprocessing Techniques

The last missing piece is the generation of the transitivity constraints given in
listing 4. As described above the graph is first made chordal. Our presentation
is simplified and will add edges already in the graph. Since a chordal graph has
no chord-free cycles of length greater than three, enumerating the chord free
cycles is trivial.

1 function TransitivityConstraints(E, M)
Input: An equality graph E = (v, e), a mappingM from term tuples to

propositional variables.
Output: A set T of new propositional clauses.

2 v′ ← v
3 while v′ ̸= ∅ do
4 n← node from v′

5 v′ ← v′ − n
6 e← e ∪ {{s, t} | {n, s} ∈ e, {n, t} ∈ e}
7 return {M(a, b),M(a, c),¬M(c, d) | {a, b} ∈ e, {a, c} ∈ e, {c, d} ∈ e}

Listing 4: Generate Transitivity Constraints.

4.4 Blocked Clause Elimination
We now discuss Blocked Clause Elimination (Bᴄᴇ) for Hᴏᴌ. Blocked Clause
Elimination is an efficient Sᴀᴛ preprocessing technique which was also suc-
cessfully applied to QBF (as QBᴄᴇ) and ᴅQBF solving. A description of Bᴄᴇ and
QBᴄᴇ can be found in section 4.1.
Recently Bᴄᴇ was lifted to first-order logic by Kiesl et al. (2017). When

doing so, equality requires specialized handling. Therefore, Fᴏᴌ clauses can
either be blocked or equality-blocked. Every equality-blocked clause is also a
blocked clause, but some blocked clauses are not equality blocked. For input
problems which do not contain equalities general first-order Bᴄᴇ is applied,
while for problems containing equalities, only equality-blocked clauses can be
eliminated.
We lifted ordinary blocked clause elimination to Hᴏᴌ and implemented the

resulting algorithm. The theoretical adaption from Fᴏᴌ is straightforward.
The main additional challenge is the undecidability of unification in the case
of Hᴏᴌ. Adapting the implementation is a bit more tricky, since indexes which
track unification partners must be adapted.
In the next subsection we will describe ordinary and equality blocked clause

54

4.4 Blocked Clause Elimination

elimination for Fᴏᴌ based on Kiesl et al. 2017. Subsection 4.4.2 then describe
the specialties emerging in the Hᴏᴌ case.

4.4.1 First-order Blocked Clause Elimination
Remember that a ᴅQBF clause is blocked if there is a blocking literal in the
clause. A literal l is a blocking literal, if all resolvents on l contain complemen-
tary literals k and k̄ with Dk ⊆ Dl.

Bᴌᴏᴄᴋᴇᴅ CᴌᴀᴜSᴇS WIᴛHᴏᴜᴛ EQᴜᴀᴌIᴛY
As mentioned above, Bᴄᴇ for Fᴏᴌ differs if equalities are present. We first as-
sume that the Fᴏᴌ formula under consideration does not contain any equalities.
In the case of Fᴏᴌ, resolution involves unification. This translates to the

definition of blocked clauses.

Definition 4.4.1 (l-resolvent). Given two clauses C = l ∨ C ′ and D = n1 ∨
· · ·∨ni∨D′ with i > 0, such that l, n̄1, . . . , n̄i are unifiable by an ᴍGᴜ σ. Then
C ′[σ] ∨D′[σ] is the l-resolvent of C and D.

Definition 4.4.2 (Blocked Clause). A clause C is blocked by a literal l ∈ C in
a Fᴏᴌ formula F if all l-resolvents of C with clauses in F \ {C} are valid.

A l-resolvent Rwithout equality is valid if and only if there is a literal k such
that {k, k̄} ⊆ R. Again blocked clauses can be removed from the problem
without changing its satisfiability status.
Checking the validity of l-resolvents without further optimizations would

require checking an exponential number of literal pairs per clause. This, how-
ever, can be reduced to a polynomial number of checks by using the algorithm
described in listing 5.
Two further optimizations exist. First a index, such as a hash map, can be

used to map literal to clause-literal pairs. A literal l is mapped to a pair (l′, C)
where l′ has opposite polarity of l, l′ ∈ C, and the predicate⁵ of l and l′ are
the same. This index can be used to quickly retrieve all unification candidates.
Furthermore, a queue of clause literal pairs is maintained. These represent
clauses with potential blocking literals. The procedure first dequeues a clause-
literal pair (C, l) from the queue and retrieves all resolution candidatesD. Then
the testing function is called. If the l-resolvent is found to be countersatisfiable,

5 In Fᴏᴌ predicates are the symbols which take terms to propositions. For example, in the propo-
sition P (a, f(b))∧R(c) the symbols P and R are predicates. They correspond to functions of
type τ → o in the Hᴏᴌ world.

55

4 Preprocessing Techniques

1 function TestLResolvValid(C, l, D, N)
Input: Clause C = l ∨C ′ and D = N ∨D′, where l̄ and n are unifiable for

all n ∈ N .
Output: T if all l-resolvents of C and D are valid, F otherwise.

2 foreach n ∈ N do
3 T ← {n}
4 while l is unifiable with all literals in T := {t̄ | t ∈ T} do
5 σ ← ᴍGᴜ of l and all literals in T
6 K ← all pairs of complementary literals in C ′[σ] ∨ (D \ T)[σ].
7 if K = ∅ then
8 return F
9 if All pairs in K contain a literal n[σ] with n ∈ N then
10 T ← T ∪ {n |n[σ] is part of a pair in K}
11 else
12 break the while loop

Listing 5: Testing the Validity of l-resolvents.

the clause-literal pair (C, l) is deactivated and saved as being deactivated by D.
Should, on a later point, D be found to be blocked and therefore be removed,
then (C, l) is re-enqueued.
We adapted this algorithm to Hᴏᴌ. First, however, we discuss Bᴄᴇ with

equalities for Fᴏᴌ.

EQᴜᴀᴌIᴛY Bᴌᴏᴄᴋᴇᴅ CᴌᴀᴜSᴇS
When equality is added as a native symbol, blocked clause elimination becomes
unsound. Consider the following example taken from Kiesl et al. (2017). Let
C := P (a) and F := (a = b ∧ ¬P (b)). In this example, P (a) and P (b) are
not unifiable. Hence, C is blocked. However, F alone is satisfiable while
(P (a) ∧ a = b ∧ P (b)) is not.
To solve this problem more clauses must be taken into account during the

test. The algorithm must not only test clauses which are unifiable with the
clause under consideration, but it must consider all those clauses which have a
literal with the same head symbol and opposite polarity.
This is implemented by flattening a literal:

Definition 4.4.3 (Flattening). Given a clause C = L(t1, . . . , tn) ∨ C ′. Flat-
tening the literal L(t1, . . . , tn) in C yields the clause: C̃ =

∨
1≤i≤n xi ̸= ti ∨

56

4.4 Blocked Clause Elimination

L(x1, . . . , xn) ∨ C ′

The literal L(x1, . . . , xn) in C̃ is the flattened literal.

Such a flattened clause is equivalent to ∨
1≤i≤n xi = ti → L(x1, . . . , xn) ∨ C ′.

Hence, flattening clauses in a problem does not change the satisfiability status
of the problem. We can define the concept of flat resolvents based on flatten-
ing of clauses. Flat resolvents are resolvents generated by resolving between
flattened clauses.

Definition 4.4.4 (Flat l-resolvent). Given two clauses C = l ∨ C ′ and D =
n1 ∨ · · · ∨ ni ∨ D′ with i ≥ 1, and such that l, n̄1, . . . , n̄i have the same pred-
icate symbol and polarity. Let C̃ and D̃ be the result of flattening the literals
l, n1, . . . , ni in C and D and l̃, ñ1, . . . , ñi are the flattened literals.
The resolvent

(C̃ \ {l̃})[σ] ∨ (D̃ \ {ñ1, . . . , ñi})[σ]

of C̃ and D̃, with σ being an ᴍGᴜ of l̃, ¯̃n1, . . . , ¯̃ni, is a flat l-resolvent of C and
D.

Finding a ᴍGᴜ for flattened clauses becomes trivial. For the flat literals L(x1,
. . . , xn), N̄2(y11, . . . , y1n), . . . , N̄i(yi1, . . . , yin) the substitution σ : yij 7→ xj is
already a ᴍGᴜ.
As in the case of Fᴏᴌ without equality, a clause C is equality blocked if all

flat l-resolvents for a literal l ∈ C are valid:

Definition 4.4.5 (Equality Blocked). A clause C is equality blocked by a literal
l ∈ C in a Fᴏᴌ formula F if the predicate of l is not = and all flat l-resolvents
of C with clauses in F \ {C} are valid.

Equality blocked clauses are redundant and can be removed from the formula
without changing its satisfiability status. Checking validity in the presence of
equality is more complex. E.g. clauses containing literals such as x = x are
already valid.
To detect the validity of flat l-resolvents a congruence closure algorithm can

be used. A flat l-resolvent R is valid if and only if the negation of its universal
closure ¬∀R is unsatisfiable. Applying distributivity to the negation will result
in an existentially quantified conjunction of negated literals. Skolemization
will then replace the free variables of R with fresh constants. Hence, ¬∀R is
equivalent to conjunction of ground equational literals.
The satisfiability of a conjunction of equalities between ground terms can be

efficiently decided by congruence closure algorithms (see Shostak 1978). Kiesl

57

4 Preprocessing Techniques

et al. (2017) note, that a complete congruence closure algorithm was to ineffi-
cient and they instead used a simplified version. First they ignored all equalities
which were present in the clauses before flattening, secondly they only applied
the equalities once, instead of recursively applying the congruence rule.

4.4.2 Higher-order Blocked Clause Elimination
We now discuss the adaption of ordinary blocked clause elimination to Hᴏᴌ.
Therefore, we restrict ourselves to Hᴏᴌ problems without equality.
When lifting Bᴄᴇ to Hᴏᴌ, the main challenge is the undecidability of unifi-

cation. This can be solved by restricting the used (blocking) literals to pattern
literals. As described on page 20, unification between pattern literals is always
decidable and if the literals are unifiable there is exactly one ᴍGᴜ. The defi-
nition of blocked clause, however, speaks about all resolvents. Hence, some
additional care has to be taken to ensure the correct handling of literals which
are not patterns. To do so we first introduce a few helpful terms.

Definition 4.4.6 (Head Symbol). Given a Hᴏᴌ formula Sτ which has been
β-normalized. Sτ is of the form λx1τ1 λx

i
τi
. t . . . where i ≥ 0 (there might

be no λ-binders) and t is either a constant, a locally bound variable, or a free
variable. The symbol t is the head symbol of Sτ .

Since we are interested in handling literals, we work with formulas (terms
of type o) which have being β-reduced as far as possible.
The head symbol can either be a flex or rigid head. Those terms are origi-

nally used in the context of higher-order unification. See subsection 2.3.1 for
a description of higher-order unification.

Definition 4.4.7 (Flex Head). Assume Sτ is a Hᴏᴌ term, then Sτ has a flex head
if the head symbol of Sτ is a free variable.

Definition 4.4.8 (Rigid Head). Assume Sτ is a Hᴏᴌ term, then Sτ has a rigid
head if it does not have a flex head.

Two terms with different rigid heads will never be unifiable. Hence, this
can be used as a simple, but incomplete, check for non-unifiability.
We now need to adapt the concept of an l-resolvent and an blocked clauses

based on this definition. We restrict blocking literals to pattern literals. A
unification test between a pattern and a non-pattern literal might still be non-
terminating. After restricting the (potential) blocking literals l to pattern liter-
als the following cases can occur when testing unification with another literal
m:

58

4.4 Blocked Clause Elimination

1. The literal m is a pattern literal. Then unification is decidable and we
proceed as in the Fᴏᴌ case.

2. The head of l is rigid and m is not a pattern literal:
a) The head symbol of m is rigid and different from the head symbol

of l. Then l and m are not unifiable.
b) In all other cases l and m might be unifiable.

3. The head of l is flex and m is not a pattern literal. Then l and m might
be unifiable.

The cases 2b and 3 are the critical ones. In those cases the we must assume
the worst case. Furthermore, it is not enough to consider literals of opposite
polarity to describe valid l-resolvents, since switching the polarity by adding
an additional negationwill still result in unifiable literals. Consider for example
the two clauses [f a]tt and [x a]tt where f and a are constant symbols and x is
a free function variable. Then this problem is equivalent to [¬(f a)]ff and
[x a]tt . Now the unification problem (¬(f a)) = (x a) can be solved by the
substitution which maps x to λy.¬(f y) and the empty clause can be derived
by resolution.
Such a transformation is only possible when one of the literals has a flex head.

In this situation the negation symbol can be added to the rigid headed literal.
When both literals have a rigid head, they are only unifiable if the head is the
same and adding the negation literal would change this.
To capture this discussion we first define l-unification constraints.

Definition 4.4.9 (l-unification constraints). Given literals [l]α, [n1]
β1 , . . . , [ni]

βi

and a set of equalities U with i elements. Then U is a l-unification constraint
if for all i it holds that l = ni ∈ U if βi ̸= α and either (¬l) = ni ∈ U or
l = (¬ni) ∈ U if βi = α.

Now we can define l-resolvents based on this definition.

Definition 4.4.10 (l-resolvent). Let C = [l]α ∨ C ′ and D = [n1]
β1 ∨ · · · ∨

[ni]
βi ∨ D′ be two clauses and U be a l-unification constraint on l, n1, . . . , ni.

Furthermore, assume that U is solvable by a ᴍGᴜ σ. Then C ′[σ] ∨ D′[σ] is a
l-resolvent of C and D.

The definitions so far did not capture the decidability of the unification prob-
lem. We do this in our definition of blocked clauses.

59

4 Preprocessing Techniques

Definition 4.4.11 (Pattern Blocked Clause). A clause C is pattern blocked by a
literal l ∈ C in a Hᴏᴌ formula F if:

• l is a pattern literal.

• None of the clauses in F −C contains a literal which is not a pattern and
has a flex head.

• All non-pattern literals in the clauses of F − C have a different head
symbol than l.

• All l-resolvents with clauses of F − C are valid.

The first three conditions in definition 4.4.11 ensure that deciding if a clause
is pattern blocked by a literal is always decidable. Those three conditions can
easily be checked and if they are fulfilled all non-pattern literals can be excluded
from unification checks, since they will never be unifiable with l.
We conjecture that pattern blocked clauses can be removed from Hᴏᴌ prob-

lems without changing its satisfiability status.

AN AᴌGᴏRIᴛHᴍ FᴏR PᴀᴛᴛᴇRN Bᴌᴏᴄᴋᴇᴅ CᴌᴀᴜSᴇ EᴌIᴍINᴀᴛIᴏN

We now describe an algorithm to find pattern blocked clauses in Hᴏᴌ prob-
lems. This algorithm corresponds to our implementation in Leo-III and is an
adaption of the algorithm described by Kiesl et al. (2017)
The algorithm maintains four data structures. A pattern index P is used

to retrieve potential pattern unification candidates. Secondly, a dictionary N
maps head symbols together with their polarity to rigid non-patterns with the
same polarity. While testing clauses and potential blocking literals, two further
data structures are used. A priority queue Q collects clause literal pairs (C, l),
where l ∈ C and l is a pattern literal. Finally, a deactivation index D is used to
track clauses which prohibit clause literal pairs from being blocked.
Since the pattern index must handle flex headed literals differently from rigid

headed pattern literals it internally uses one map and two sets. The dictionary
P.rigidIndex is similar to the non-pattern dictionaryN andmaps head symbols
and polarity to rigid patterns with the same polarity. The two sets P.rigid and
P.flex collect all clause pattern literal pairs where the head of the literal is rigid
and flex, respectively.
Listing 6 describes how fresh clause literal pairs are inserted into the pattern

index. This is done by a simple case distinction on the type of head literal in
the added clause literal pair has.

60

4.4 Blocked Clause Elimination

1 function AddToIndex(P, C, l)
Input: A pattern index P , a clause C, and a pattern literal l ∈ C

2 h← head of l.
3 p← polarity of l.
4 if l is a flex literal then
5 Q.flex ← Q.flex ∪ {(C, l)}
6 else
7 Q.rigid ← Q.rigid ∪ {(C, l)}
8 Q.rigidIndex ((p, h))← Q.rigidIndex ((p, h)) ∪ {(C, l)}

Listing 6: Adding a clause literal pair to the pattern index.

The method described in listing 7 is used to query the pattern index for the
possible resolution candidates. The candidates are grouped by clause to enable
a fast retrieval of all potential candidates in any clause. If the query literal has
a flex head, all saved literals are returned.

1 function QueryPatternIndex(P, l)
Input: A pattern index P and a pattern literal l ∈ C
Output: A set of tuple (C,L) where C is a clause and L ⊆ C, such that

the elements of L are potentially unifiable with l.
2 h← head of l.
3 p← polarity of l.
4 if l is a flex literal then
5 S ← P.flex ∪ P.rigid
6 else
7 S ← P.flex ∪ P.rigidIndex ((¬p, h))
8 D ← {c | (c,) ∈ S}
9 return {(C,L) |C ∈ D,L = {l | (C, l) ∈ S}}

Listing 7: Retrieving potential resolution candidates from the pattern index.

The deactivation index D must maintain two dictionaries. One to save
which clauses are certain clause deactivates and another one to remember by
which clauses a clause is deactivated.
The priority queue Q orders clause literal pairs by the number of possible

resolution candidates returned by querying the pattern index.
We now present the outer loop of the pattern blocked clause elimination

algorithm. The pseudo code is split into two parts. Listing 8 describes the first

61

4 Preprocessing Techniques

iteration over the input problem to initialize the data structures, while listing 9
is the test loop.

1 function PBCE(M)
Input: A equality free setM of skolemized clauses.
Output: A potentially smaller set of clauses.

2 P ← empty pattern index. N ← empty dictionary of non-patterns.
3 ϕ← ∅
4 foreach C ∈M do
5 foreach l ∈ C do
6 if l is a pattern then
7 AddToIndex(P,C,l)
8 ϕ← ϕ ∪ {(C, l)}
9 else
10 p← polarity of l. h← head of l.
11 if l is rigid. then
12 N((p, h))← N((p, h)) ∪ {(C, l)}
13 else
14 if f is defined then
15 return Input contains two flex non-patterns. Aborting Bᴄᴇ.
16 f ← (C, l)

17 D ← empty deactivation index. Q← empty priority queue.
18 if f is defined and is (C,). then
19 Add all pairs (C, l) with l ∈ C and l is a pattern to Q.
20 Mark all pairs (C ′, l′) with C ′ ̸= C in ϕ as deactivated by C.
21 else
22 foreach (C, l) ∈ ϕ do
23 p← polarity of l. h← head of l.
24 r ← N((p, l)) if l is rigid, N((p, l)) ∪N((¬p, l)) otherwise.
25 if r = ∅ then
26 Enqueue (C, l).
27 else
28 Mark (C, l) as deactivated by the clauses in r.

Listing 8: Initializing the data structures for pattern blocked clause elimination.

62

4.4 Blocked Clause Elimination

28
29 B ← ∅
30 while Q not empty do
31 (C, l)← dequeue from Q.
32 S ← QueryPatternIndex(Q, l).
33 b← T
34 foreach (C ′, L) ∈ S do
35 if ¬ValidOrNotRes(C,l,C’,L) then
36 b← F
37 break

38 if b = T then
// Clause is blocked!

39 B ← B ∪ {C}
40 Add clauses literal pairs deactivated by C to Q.
41 else
42 Mark (C, l) as deactivated by C ′.
43 returnM \B

Listing 9: Main loop of pattern blocked clause elimination.

The last missing piece is the check for validity of the l-resolvents. Since our
main loop only collects resolution candidates, the algorithm is slightly more
complex. Nevertheless, it again is an adaption of the algorithm for Fᴏᴌ which
we reproduced in listing 5. To capture the notion of l-unification constraints,
we introduce an additional set P which first creates the appropriate unification
problems and removes those constraints which are by themselves not solvable.
Hence, after the first loop, we got rid of all unification candidates which are
not actually unifiable.

63

4 Preprocessing Techniques

1 function ValidOrNotRes(C, l, D, L)
Input: A clause C, a pattern literal l ∈ C, a second clause D, and a set of

literals L ⊆ D
Output: T if all l-resolvents on C with D are valid.

2 P ← ∅// For unification constraints a = b where a is l or ¬l.
3 foreach l′ ∈ L do
4 if The polarity of l is different from the polarity of l′ then
5 ρ← (l = l′)
6 else

// Given the overall algorithm, either l or l′ must have
a flex head at this point!

7 if l has a flex head then
8 ρ← (l = (¬l′))
9 else
10 ρ← ((¬l) = l′)

11 if ρ is solvable (the pair is unifiable) then
12 P ← P ∪ {ρ}

13 foreach ρ ∈ P do
14 T ← {ρ}
15 while T is solvable with ᴍGᴜ σ do
16 N ′ ← the literals from L which are present in the constraints in T .
17 K ← (C − l)[σ] ∨ (D \N ′)[σ]
18 C ← {{t, t′} | t = t̄, t ∈ K, t′ ∈ K}
19 if C ̸= ∅ then // C is valid.
20 if for all p ∈ C there is a n ∈ L such that n[σ] ∈ p or (¬n)[σ] ∈ p

then
21 T ← T ∪ {n |n ∈ L, ∃p ∈ C s.t. n[σ] ∈ p or (¬n)[σ] ∈ p}
22 else
23 break The while loop.
24 else
25 return F

26 return T

Listing 10: Check if all l-resolvents for a clause pair are valid.

64

4.5 First-order Re-encoding

4.5 First-order Re-encoding
The finale preprocessing technique we discuss is not an adaption of any QBF
or ᴅQBF preprocessing technique. Instead, it adapts the encoding of QBFs into
Fᴏᴌ to delay costly primitive substitution operations. Such an encoding was
presented by Seidl, Lonsing, and Biere (2012) together with a tool which per-
forms this encoding.
In fact, the tool translates input QBF problems into Effectively Propositional

Logic (ᴇᴘR). The target logic is a decidable fragment of classical Fᴏᴌ and while
QBF is ᴘSᴘᴀᴄᴇ-complete, deciding ᴇᴘR formulas is NᴇXᴘᴛIᴍᴇ-complete. Hence,
ᴇᴘR is more expressive than QBF and as expressive as ᴅQBF.
A Fᴏᴌ formula is in ᴇᴘR if it has the following form:

∃x1. . . . ∃xk. ∀y1. . . . ∀yl.
n∧

i=0

mi∨
j=0

tij

where the literals tij contain no function symbols.
The translation into ᴇᴘR is done in two steps. We are interested in the first

step which translates QBF formulas into first-order predicate logic. The second
step then would modify the result of the first step to ensure that the resulting
problem has the structure as described above.
A translation function J.Kp is used to convert QBF formulas to Fᴏᴌ formulas:

J∃xi. ϕKp = ∃xi. JϕKp J∀xi. ϕKp = ∀xi. JϕKpJϕ ∨ ψKp = JϕKp ∨ JψKp Jϕ ∧ ψKp = JϕKp ∧ JψKpJxiKp = p(xi) J¬xiKp = ¬p(xi)
With p being a new predicate symbol. Furthermore, two dedicated unary
function symbols (constants) ⊤ and ⊥ are added. This leads to the lemma:

Lemma 4.5.1. Let ϕ be a QBF and p a unary predicate symbol. Then ϕ is
satisfiable if and only if the Fᴏᴌ formula JϕKp ∧ p(⊤) ∧ ¬p(⊥) is (see Seidl,
Lonsing, and Biere 2012).

Intuitively, the predicate p is used to capture the behavior of QBF variables.
This is expressed by the two additional unit clauses. In some sense, it encodes
the properties of the Boolean type. Since Hᴏᴌ natively supports Boolean vari-
ables, this additional wrapping is not needed when translating from QBF to
Hᴏᴌ.

65

4 Preprocessing Techniques

Recall the description of primitive substitution on page 2.3.1. In the proof
calculi used by Lᴇᴏ-II and Leo-III primitive substitution is only applied to the
top-level. Hence, when directly translating QBF to Hᴏᴌ primitive substitution
will guess Boolean assignments to variables and will guess functions for the
generated Skolem functions.
Our procedure wraps literals into a fresh predicate p, just as the translation

function J.Kp does. The procedure is parameterized by a Boolean value ewhich
indicates whether equalities should be wrapped into the new predicate too.
Listing 11 contains the pseudo code for the procedure. It first iterates over the
matrix and wraps the literals and then adds two unit clauses {[p(⊤)]tt} and
{[p(⊥)]ff }⁶.

1 function FirstOrderReEncoding(M, e)
Input: A clausified Hᴏᴌ problemM and a Boolean value e.
Output: A modified matrix.

2 M ′ ← ∅
3 p← a fresh function symbol of type o→ o.
4 foreach C ∈M do
5 C ′ ← ∅
6 foreach l ∈ C do
7 if l is of the form [to]

α then // l is not an equalization
literal.

8 C ′ ← C ′ ∪ {[(p to)]α}
9 else

// l is of the form [sτ = tτ]
α.

10 if e = T then
11 C ′ ← C ′ ∪ {[p (sτ = tτ)]

α}
12 else
13 C ′ ← C ′ ∪ {l}

14 M ′ ←M ′ ∪ {C ′}
15 M ′ ←M ′ ∪ {{[p(⊤)]tt}, {[p(⊥)]ff }}
16 returnM ′

Listing 11: First-order Re-Encoding.

Given that the fresh symbol po→o is forced by the two additional unit clauses
6 The two symbols ⊤ and ⊥ are commonly used in Hᴏᴌ to represent truth constants. They are
defined as ∥⊤∥M,σ = T and ∥⊥∥M,σ = F for an interpretationsM and variable assignments
σ.

66

4.5 First-order Re-encoding

to behave exactly like the identity function λxo. xo, it is trivial to see, that this
procedure does not change the satisfiability status of the input problem.
Resolving with the two added clauses also removes the wrapping after one

step. Consider the following example:

[p(xo)]
tt [p(⊥)]ff

R(Res)
[p(xo) = p(⊥)]ff

R(DeComp)
[xo = ⊥]ff

[xo]
tt

Resolving with the unit clause creates a unification constraint between two
application of the po→o function. Applying one of the pre-unification rules
results in an equality between the wrapped term and a constant, which after
some simplifications steps leads to the unwrapped term.

67

5 Implementation
We implemented the preprocessing techniques proposed in chapter 4 in the
Leo-III system. In this chapter, we discuss various practical aspects related to
our implementation. In section 5.1 we start the discussionwith an outline of the
questions which arose while implementing the techniques and our answers to
these questions. To generate suitable benchmarking problems we developed
tools to convert QBF and ᴅQBF problems to Hᴏᴌ. A description and manual
of those tools can be found in section 5.2. Finally, section 5.3 describes the
benchmarking results.

5.1 Aspects of the Implementation
Overall our implementation of the preprocessing algorithms is very similar to
the pseudo code given in chapter 4. Therefore, we will not reproduce the final
source code here, but instead discuss various aspects of the implementation.
As mentioned in subsection 2.3.2, Leo-III is implemented in the Scala pro-

gramming language. The Leo-III homepage¹ provides information and down-
loads² related to the project. The documentation included with Leo-III pro-
vides an introduction how the prover can be compiled on a Linux system.
Leo-III collects the various available rules in a Control object. We opted

to implement our preprocessing technique as such rules. Each rule is imple-
mented as a Scala object which implements the CalculusRule trait to ensures
that the rule can be present in the generated proof output. The trait is simple:

1 trait CalculusRule {
2 def name: String
3 def inferenceStatus: SuccessSZS
4 }

The name attribute is a human readable name of the rule and the inference-
Status attribute represents the inference status of the rule. Its values are taken

1 http://page.mi.fu-berlin.de/lex/leo3/
2 At the time of writing, version 1.1 of Leo-III was publicly available. This version did not
include our additions.

69

 http://page.mi.fu-berlin.de/lex/leo3/

5 Implementation

from the SᴢS ontology³. The SᴢS ontology by Sutcliffe, Zimmer, and Schulz
(2003) provides a systematic collection of status values for logical data and rela-
tionships between the values. For our rules the SZS_EquiSatisfiable status
is used.
Finally, each rule object must have a method which is used by the control

object to apply the rule. This is not abstracted into an interface and differs
from rule to rule. In our case we implemented one method per technique
which takes a set of causes as input and returns a set of clauses. In the case of
universal reduction, this set contains all the original clauses after removing the
removable literals. Constant extraction, on the other hand, returns a new set of
unit clauses which must be added to the clause set. Blocked clause elimination
returns a subset of the input clauses and first-order re-encoding also returns
the input set, where some clauses are modified and two additional clauses have
been added.
The preprocessing rules can be activated and parameterized by command

line arguments handed to Leo-III. The arguments are:

• ure_activate to activate universal reduction.

• sce_activate to activate Sᴀᴛ based constant extraction.

• bce_activate to activate blocked clause elimination.

• fre_activate to activate first-order re-encoding and fre_dontWrapEqs
to deactivate wrapping of equality literals.

Since Sᴀᴛ based constant extraction might produce unit clauses consisting of
a singular universally quantified variable which universal reduction can than
eliminate to generate the empty clause, we run Sᴀᴛ based constant extraction
before universal reduction. Furthermore, blocked clause elimination might re-
move the clauses introduced by Sᴀᴛ based constant extraction and hence must
be run first. Overall, the techniques are executed during the preprocessing
phase of Leo-III in the following order:

1. Blocked clause elimination,

2. Sᴀᴛ based constant extraction,

3. Universal reduction,

4. First-order re-encoding.
3 A list of potential SᴢS states is available online at http://www.cs.miami.edu/~tptp/

cgi-bin/SeeTPTP?Category=Documents&File=SZSOntology

70

http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Documents&File=SZSOntology
http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Documents&File=SZSOntology

5.1 Aspects of the Implementation

Executing those «complex» preprocessing methods is done after all the other
preprocessing steps, especially clausification and skolemization are completed
and right before the main reasoning loop starts.
Implementing universal reduction and first-order re-encoding was straight-

forward and our implementation corresponds to the pseudo code. Blocked
clause elimination and Sᴀᴛ based constant extraction is a bit more complex.
To implement blocked clause elimination, we developed a PatternIndex

class which implements the pattern index data structure as described in sub-
section 4.4.2. Furthermore, a class Deactivations is used to keep track of
deactivated clauses. Internally it used two hash maps. One map is used to map
clause literal pairs to the clauses that deactivate them and one is ued to map
clauses to the clause literal pairs that are deactivated by them.
Our implementation of Sᴀᴛ based constant extraction uses an ad-hoc graph

implementation to represent the equality graph. Edges are represented in an
adjacency lists. Since edges are only used when making the graph chordal and
during enumeration of the transitivity constraints, this representation works
well. Furthermore, Sᴀᴛ based constant extraction utilizes the external Sᴀᴛ
solver ᴘicoSᴀᴛ.

5.1.1 Bindings for PicoSAT
The ᴘicoSᴀᴛ system by Biere (2008) is a small Sᴀᴛ solver, which can be used as
a standalone tool, or as a library. The latest release of ᴘicoSᴀᴛ is available on
the ᴘicoSᴀᴛ homepage⁴.
While ᴘicoSᴀᴛ is not competitive with recent Sᴀᴛ solvers⁵, its well docu-

mented interface and decent performance made it a good choice for the imple-
mentation of Sᴀᴛ based constant extraction. Furthermore, the system supports
two important features. On one hand, iterative solving is supported. This
means, that additional clauses can be added as assumptions after running the
solver without invalidating the old intermediate data structures. In the case
of Sᴀᴛ based constant extraction, the individual literals can be temporarily as-
sumed. On the other hand, ᴘicoSᴀᴛalso supports the generation of unsatisfiabil-
ity cores. In the case of an unsatisfiability problem, this feature allows the gen-
eration of subsection of clauses which are unsatisfiable by themselves. For Sᴀᴛ
based constant extraction, this allows the detection which original clauses im-
ply the constant literal. Note that the generated cores are not minimal. Hence,

4 http://fmv.jku.at/picosat/
5 For example, ᴘicoSᴀᴛ did not participate in the Sᴀᴛ competition 2016. Results are available
here: http://baldur.iti.kit.edu/sat-competition-2016/index.php?cat=results

71

http://fmv.jku.at/picosat/
http://baldur.iti.kit.edu/sat-competition-2016/index.php?cat=results

5 Implementation

there might be a real subset of clauses which is still unsatisfiable. The ᴘicoSᴀᴛ
system comes with a standalone tool to compute minimal unsatisfiability cores,
this feature, however, is not present in the ᴀᴘI, but is also not necessary for our
implementation.
The ᴀᴘI of ᴘicoSᴀᴛ is completely defined in a single header file picosat.h.

Every function in this file is commented and this also serves as the main docu-
mentation of the ᴘicoSᴀᴛ ᴀᴘI. To facilitate the usage of ᴘicoSᴀᴛ in Leo-III, we
implemented Java Native Interface (ᴊNI) bindings. This allows calls to ᴘicoSᴀᴛ
directly from Leo-III without invoking ᴘicoSᴀᴛ as an external command. A
documentation for ᴊNI is available on the Java web page⁶.
Our bindings mirror the functions of the picosat.h file and only provide

minimal abstraction around them. The ᴘicoSᴀᴛ ᴀᴘI allows the creation of mul-
tiple solver instances which can be used independently. We represent this in
our ᴀᴘI too. It is unclear if ᴘicoSᴀᴛ is thread save and we suggest limiting the
usage of each ᴘicoSᴀᴛ solver instance to one thread. Furthermore, unsatisfia-
bility core generation has a bigger memory footprint, since prove traces must
be stored. Therefore, our ᴀᴘI allows the deactivation of unsatisfiability core
generation for each solver instance.
The following code gives a short example of the ᴀᴘI:

1 val solver = PicoSAT(true)
2 solver.addClause(List(-1, -3, -2))
3 solver.addClause(List(-2, -3, -1))
4 solver.addClause(List(3))
5 assert(solver.solve() == PicoSAT.SAT)
6 assert(context.getAssignment(1) == Some(false))

In the first line a new solver instance with activated core generation is re-
quested. Then three clauses are added. Literals are expressed as integers. A
positive integer n stands for the propositional literal xn and a negative integer
−n for ¬xn. Finally, the solver is called and returns that satisfiability state of
the problem. Now the generated model of the problem can be queried. In
this case F must be assigned to x1.

5.2 From QBF to HOL: QBFToys
To appropriately benchmark the preprocessing techniques we can use the
problems present in the ᴛᴘᴛᴘ problem library. We, however, based our pre-
processing techniques on QBF preprocessing and hence hoped evaluating their

6 http://docs.oracle.com/javase/8/docs/technotes/guides/jni/index.html

72

http://docs.oracle.com/javase/8/docs/technotes/guides/jni/index.html

5.2 From QBF to HOL: QBFToys

performance on QBF and ᴅQBF problems would give valuable insights. Unfor-
tunately the problems we generated this way were too hard for Leo-III and
ultimately unusable. See subsection 5.3.1 for a discussion of this problem.
We implemented tools which perform the translations from QBF and ᴅQBF

to Hᴏᴌ as described in section 3.1 and 3.3. The tools are available on GitHub⁷.

BᴜIᴌᴅING ᴛHᴇ TᴏᴏᴌS

Both tools are written in Haskell. While there are multiple ways to build the
tools, using the Stack build tool⁸ is strongly recommended by us and docu-
mented here. To install Stack follow the instructions on the Stack homepage.
The qbfTool folder contains the source code for the QBF to Hᴏᴌ converter,

and the ᴅQBF tool is in the dqbfTool folder. After the installation of Stack
is complete, open a terminal and navigate to either folder. Then run then
following commands, where {tool} is either qbfTool, or dqbfTool:

1 > stack setup
2 > stack build
3 > stack exec {tool}

The stack build command outputs the path the resulting binary is placed
in. On Linux calling stack install will copy the binary to ˜/.local/bin.
Alternatively, the programs can be run with additional arguments ({args}) by
calling

1 > stack exec {tool} -- {args}

CᴏNᴠᴇRᴛING QBF PRᴏBᴌᴇᴍS

The QᴅIᴍᴀᴄS format is widely used to represent QBF problems in ᴄNF. It is an
extension of the ᴅIᴍᴀᴄS format used for propositional problems and QᴅIᴍᴀᴄS
is compatible with ᴅIᴍᴀᴄS. Every valid ᴅIᴍᴀᴄS file is also a valid QᴅIᴍᴀᴄS file.
Variables in the QᴅIᴍᴀᴄS format are expressed by non-zero natural numbers
and literals are expressed by non-zero integers. The variable index of a literal
is the absolute value of the integer, the polarity is represented by the sign of
the integer. The following is a small QᴅIᴍᴀᴄS file:

1 p cnf 3 3
2 c an example problem

7 https://github.com/hansjoergschurr/QBFToys
8 Available at: https://haskellstack.org

73

https://github.com/hansjoergschurr/QBFToys
https://haskellstack.org

5 Implementation

3 a 1 2
4 e 3
5 -1 -3 -2 0
6 -2 -3 -1 0
7 3 0

The first line starting with p gives meta information about the problem. The
first number is the highest variable appearing in the problem and the second
number denotes the number of clauses. Then lists of literals are given line by
line and terminated by a 0. The first few lines represent the quantifier prefix
and start with a letter. The letter e is used for existential quantification and a for
universal quantification. Then the clauses are given one per line. Comment
lines start with c.
A formal grammar of the QᴅIᴍᴀᴄS format can be found online⁹. This gram-

mar forbids empty clauses and files without any clauses. We found that Bᴌᴏ-
QQᴇR sometimes does generate problems with empty clauses and completely
empty problems. Hence, our tool tries to be very liberal when parsing QᴅIᴍᴀᴄS
problems. It especially ignores the metadata given in the first line.
The QBF2ᴇᴘR tool by Seidl, Lonsing, and Biere (2012), which translates QBFs

to ᴇᴘR also allows the translation into Hᴏᴌ and supports ᴛᴘᴛᴘ output. This
feature of the tool, however, is implemented in Python and is too slow on
bigger input problems. Furthermore, input problems which did not follow
the QᴅIᴍᴀᴄS standard result in crashes.
The default behavior of qbfTool is to accept a QᴅIᴍᴀᴄS problem on the

standard input and to output a ᴛᴘᴛᴘ problem to standard output. Assuming a
file test.qdimacs which contains the following QᴅIᴍᴀᴄS problem:

1 p cnf 6 3
2 e 1 0
3 a 0
4 e 2 0
5 a 3 4 0
6 e 5 6 0
7 1 3 5 0
8 1 2 0
9 2 4 6 0
10 99 0

This problem is not a valid QᴅIᴍᴀᴄS file. The meta values are wrong and a
quantifier line contains an empty list of variables. Executing qbfTool on this

9 http://www.qbflib.org/qdimacs.html

74

http://www.qbflib.org/qdimacs.html

5.2 From QBF to HOL: QBFToys

problem results in the following output:

1 > cat test.qdimacs | stack exec qbfTool
2 thf(c,conjecture,(? [X1: $o,X2: $o,X3: $o]:(! [X4: $o,X5:

$o]:(? [X6: $o,X7:
$o]:((X1|X4|X6)&(X1|X3)&(X3|X5|X7)&(X2)))))).

↪→

↪→

This output is not a direct translation of the input problem. The qbfTool
also applies some normalization steps. Those are:

• Consequitive lines containing the same quantifier are merged.

• Empty quantifiers are removed and the surrounding quantifiers are
merged.

• Variables are renamed by the order they appear in the quantifier. This
also assures that all variables are used without gap.

• Variables which are used in the matrix, but which do not appear in the
quantifier prefix, are added to the outermost quantifier if the outermost
quantifier is an existential quantifier. Otherwise, an existential quantifier
containing those variables is added.

• If the input problem does not contain any clauses, the clause x ∨ ¬x is
added.

• If the input problem contains the empty clause, a clause x and a clause
¬x is added.

If the tool is called with the command line parameter -n, the output is a
valid QᴅIᴍᴀᴄS problem resulting from these transformations instead of a ᴛᴘᴛᴘ
problem. For the QᴅIᴍᴀᴄS problem given above this output is:

1 p cnf 7 4
2 e 1 2 3 0
3 a 4 5 0
4 e 6 7 0
5 1 4 6 0
6 1 3 0
7 3 5 7 0
8 2 0

75

5 Implementation

As described above, free variables are implicitly existentially quantified in
the input problem and explicitly existentially quantified in the output problem.
Hence, the input QBF problem is satisfiable if the output problem is valid. A
resolution prover will negate the input problem and show its unsatisfiability.
Negating a problem in clause normal form and clausifying the negated prob-
lem requires repeated application of the distributive laws and is therefore an
expensive operation. Furthermore, a prover is geared towards showing valid-
ity and will seldom deduce that an input problem is not valid. Hence, the -i
command line parameter will instruct qbfTool to add a negation in front of
the output problem. The resulting problem will be a theorem if an only if the
input problem is unsatisfiable.
Finally, the -o filename parameter can be used to instruct qbfTool to write

the output into a file. If this parameter is used, qbfToolwill output exactly one
line to the standard output. This line will contain the number of variables and
number of clause in the problem separated by a space.

CᴏNᴠᴇRᴛING DQBF PRᴏBᴌᴇᴍS

The dqbfTool generates Hᴏᴌ problems in the ᴛᴘᴛᴘ format from ᴅQBF prob-
lems in the bunsat format. This format has been defined for the bunsat tool by
Finkbeiner and Tentrup (2014) which is an incomplete unsatisfiability checker
for ᴅQBF. This format also supports input problems which are not in ᴄNF.
As an alternative to the bunsat format, the ᴅQᴅIᴍᴀᴄS format exists. This

format is an extension of the QᴅIᴍᴀᴄS format and was developed by Fröhlich
et al. (2014) for the iᴅQ system. Like QᴅIᴍᴀᴄS every valid (Q)ᴅIᴍᴀᴄS file is
also a valid ᴅQᴅIᴍᴀᴄS file. Unlike the bunsat format ᴅQᴅIᴍᴀᴄS only supports
problems in ᴄNF.
The following example of the bunsat format was taken from the bunsat web

page¹⁰. This page also contains an incomplete grammar of the format. We
used the source code of bunsat tools published on the web page to «reverse
engineer» the missing pieces of the grammar.

1 A x1 x2: E{x1} y1 : E{x2} y2: ((~y1) | y2) <--> (x1 ^ x2)

Problems in bunsat formats start with the universal quantifier denoted by an
A, follow with the list of universal variables. Then, after a colon, follows a list
of existentially quantified variables each of the form E{x1 ... xn} yi where
the variables in the curly brackets are the dependency set of the variable yi.
Then, after another colon, follows a Boolean formula. The format supports

10 https://www.react.uni-saarland.de/tools/bunsat/

76

https://www.react.uni-saarland.de/tools/bunsat/

5.3 Benchmarking

multiple synonymous names for the operators. To express conjunction the &
operator can be used and ^ denotes the exclusive-or.
The dqbfTool behaves the same way as the qbfTool behaves, but does not

apply any normalizations to the input problem. Hence, the -n command line
parameter is not supported. The -i parameter adds a negation symbol to the
output and the -o parameter writes the output into a file. If the -o parameter
is given, the tool does not write any metadata to the standard output.

5.3 Benchmarking
We now discuss the results of benchmarking our preprocessing techniques on
various problems. This section starts with a description of the benchmarking
problems we intended to use. In accordance to the previously discussed logics,
this set of problems is threefold. We prepared QBF, ᴅQBF, and Hᴏᴌ problems
for benchmarking.
The QBF dataset is based on the eval2010 set of problems. This set of QBF

problems was used for the QBFᴇᴠᴀᴌ’10 competition¹¹. It consists of problems
selected from the QBFlib database¹² of QBF problems and additional contributed
problems. The dataset¹³ contains a total of 568 problems in the QᴅIᴍᴀᴄS format.
Some of these problems are satisfiable, some of them are not. Before translating
the problems to Hᴏᴌ problems, we classified them using the ᴅepQBF QBF solver.
Problems which could not be solved by ᴅepQBF were discarded, there is not
much hope that problems to hard for a specialized QBF solver can be solved by a
Hᴏᴌ theorem prover. Overall this process¹⁴ resulted in 116 satisfiable problems
and 201 unsatisfiable problems. Hence, 317 problemswere selected. In a second
step we converted all problems to Hᴏᴌ problems in the ᴛᴘᴛᴘ format. Since
the qbfTool adds explicit existential quantification, the unsatisfiable problems
were negated. Hence, all resulting problems are theorems¹⁵.
Furthermore, we downloaded the ᴅQBF benchmarks published by the bunsat

authors¹⁶. According to Finkbeiner and Tentrup (2014), these problems have

11 see: http://www.qbflib.org/event_page.php?year=2010
12 The library is available online at http://www.qbflib.org/.
13 The version used for our benchmarks were downloaded from the web page of the QBFGᴀᴌᴌᴇRY

2013. This was a non-competitive evaluation of QBF systems held in 2013 and 2014. The
results and benchmark downloads, including the used QBFᴇᴠᴀᴌ’10 problem set, are available at
http://www.kr.tuwien.ac.at/events/qbfgallery2013/results.html.

14 We used ᴅepQBF version 6.02 in its default configuration with a timeout of 30 seconds on a
shared computer with two Intel Xeon E5430 quad core ᴄᴘᴜs and 32GB Rᴀᴍ.

15 Assuming that ᴅepQBF and our conversation tool is sound.
16 available at: https://www.react.uni-saarland.de/tools/bunsat/

77

http://www.qbflib.org/event_page.php?year=2010
http://www.qbflib.org/
http://www.kr.tuwien.ac.at/events/qbfgallery2013/results.html
https://www.react.uni-saarland.de/tools/bunsat/

5 Implementation

been generated by taking a Boolean circuit, replacing parts of the circuit with
«black boxes» and then taking the original circuit as specifications for the re-
sulting partial circuit. The so generated ᴅQBF problem is satisfiable if the «black
boxes» can be filled with Boolean circuits to construct a circuit with the same
behavior as the specification circuit. Since bunsat is an unsatisfiability checker,
exactly one random gate was replaced with another gate to make the prob-
lem unsatisfiable. Hence, when converting the problems with the dqbfTool,
we negated the problem to generate a theorem. The input dataset contains
problems generated from four circuits: A 32-bit adder, a 32-bit lookahead ar-
biter implementation, a 32-bit multiplexer, and a 4-bit multiplier. Into this
circuit one, three, five, seven, or nine black boxes were inserted. For each of
this twenty classes, 100 problems are part of the problem set. We sampled 25
problems from each class to get 500 ᴅQBF problems in total.
Finally, we selected the set of ᴛᴘᴛᴘ problems which were eligible for the

ᴄᴀSᴄ-ᴊ8 Hᴏᴌ track¹⁷. This is a set of 743 Hᴏᴌ problems from the ᴛᴘᴛᴘ library.
Unfortunately, as we describe in the next section, we encountered difficulties
with the QBF and ᴅQBF problem sets during the empirical evaluation and were
ultimately unable to use it.

5.3.1 Empirical Results
We ran various empirical experiments on the above described problem sets.
The experiments were run on a shared Debian Linux server with two Intel
Xeon E5430 quad core ᴄᴘᴜs and 32GB Rᴀᴍ running version 3.6. of the Linux
kernel.
We used a Python script to automatize the tests. The script consumes a list of

input problems and runs a copy of Leo-III on each problem one after another.
It also matches the log output of Leo-III against multiple regular expressions
which are used to extract values from the log. For example the expression
«^\% URE Time (\d+(.\d*)?)» extracts a decimal value from the log. In
this case an expression was inserted into Leo-III source code which printed the
runtime of universal reduction. Furthermore, if performance parameters were
measured, Leo-III was forced to abort as soon as the parameter in question was
calculated. This means, that if a value could not be measured because of a
timeout, preprocessing was not even finished.
For these experiments our preprocessing techniques were added to Leo-III

version 1.1. All experiments were run with a timeout of 60 seconds. Our

17 The list of eligible problems is available at http://www.cs.miami.edu/~tptp/CASC/J8/
EligibleProblems.html.

78

http://www.cs.miami.edu/~tptp/CASC/J8/EligibleProblems.html
http://www.cs.miami.edu/~tptp/CASC/J8/EligibleProblems.html

5.3 Benchmarking

Problem Name Variables Clauses
sa
t toilet_g_04_01.2-shuffled 22 52

toilet_g_02_01.2-shuffled 12 22

un
sa
t

lut4_XOR_fOR-shuffled 43 168
toilet_c_04_01.4-shuffled 58 185
z4ml.blif_0.10_1.00_0_0_out_exact-shuffled 63 194
toilet_c_02_01.2-shuffled 17 37
toilet_a_02_01.2-shuffled 18 39

Table 5.1: Feasible QBF problems.

script waits 30 seconds longer before forcibly killing Leo-III. Since the internal
timeout procedure of Leo-III did not work reliably before the prover finished
its preprocessing part, this often resulted in an effective timeout of 90 seconds.
Leo-III was run in sequential mode.

THᴇ INFᴇᴀSIBIᴌIᴛY ᴏF Sᴏᴍᴇ PRᴏBᴌᴇᴍS

During our first experiments with the problem sets generated by translating
QBF and ᴅQBF problems we encountered a challenge: In many instances the
prover would not even reach the point where our preprocessing procedures
are executed before the timeout is reached. This means that parsing, clausifi-
cation, and build-in preprocessing techniques already took longer then the set
timeout.
We decided to not use the ᴅQBF problem set for further experiments and to

select those problems from the QBF problem set, where the internal preprocess-
ing steps where finished before the timeout.
The result of this test showed how hard this problem domain is for Hᴏᴌ

theorem provers. Of the 317 problems, only seven problems passed minimal
processing before the timeout was reached. Two problems were satisfiable,
and five problems were counter satisfiable. Table 5.1 shows the remaining
problems and the number of distinct variables and clauses appearing in those
problems.
We included these seven problems into every one of the following experi-

ments. This resulted in 750 problems in total.
The experiments were conducted in two rounds. In the first round, we

applied the algorithms to all input problems and recorded the number of prob-
lems Leo-III was able to solve. In the second round, we measured several key

79

5 Implementation

metrics, such as the runtime, for each algorithm. Leo-III was aborted after
recording these measurements.

Iᴍᴘᴀᴄᴛ ᴏN ᴛHᴇ NᴜᴍBᴇR ᴏF Sᴏᴌᴠᴇᴅ PRᴏBᴌᴇᴍS
To gauge the impact of the preprocessing techniques on the number of prob-
lems Leo-III is able to solve, we ran the prover on the dataset described above
with multiple configurations.
Of the 750 theorems, Leo-III was able to prove

• 475 without preprocessing (None),

• 475 with universal reduction (URE),

• 477 with Sᴀᴛ based constant extraction (SCE),

• 454 with blocked clause elimination (BCE),

• 418 with first-order re-encoding (Fo-Re), and

• 458 with all techniques except first-order re-encoding (Mult.).

The shorthand noted in brackets is used in the following tables to reference
the configurations. The last configuration was selected after preliminary ex-
periments showed that first-order re-encoding has a negative impact on prover
performance.
Overall, only Sᴀᴛ based constant extraction enabled the prover to solve more

problems. Each algorithm, however, made some problems unsolvable, and
some other problems solvable. Hence, we calculated the number of problems
which were solved by one configuration compared to another one.
In table 5.2 each number denotes the number of problems which were solved

by the configuration in the column, but not by the configuration in the row.
For example, Leo-III with universal reduction was able to solve seven problems
which were not solved by Leo-III with Sᴀᴛ based constant extraction.
This shows, that every technique was able to solve some problems which

were not solved by Leo-III without any additional preprocessing. Furthermore,
each technique was able to solve appropriately 60 more problems than Leo-III
with first-order re-encoding. Hence, this technique is not very promising.
Only one problem (SEU717ˆ1¹⁸) was solved by the configuration Mult. and

none of the three specific preprocessing techniques alone, nor by Leo-III with-
18 This problem is from the set theory domain and contains the laws of typed sets. It is

available at http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Problems&
Domain=SEU&File=SEU717^1.p

80

http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Problems&Domain=SEU&File=SEU717^1.p
http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Problems&Domain=SEU&File=SEU717^1.p

5.3 Benchmarking

Solved
None Mult. URE Fo-Re SCE BCE

N
ot

So
lv
ed

None 0 11 7 7 10 7
Mult. 28 0 24 25 27 9
URE 7 7 0 7 9 8
Fo-Re 64 65 64 0 65 58
SCE 8 8 7 6 0 7
BCE 28 13 29 22 30 0

Table 5.2: Problems solved by various preprocessing techniques.

out preprocessing. Since the success on this singular problem might be the
result of fluctuations in available computing resources, this result indicates that
the techniques do not profit from one another.

UNIᴠᴇRSᴀᴌ RᴇᴅᴜᴄᴛIᴏN

In the case of universal reduction, we measured the runtime of the algorithm
and the number of removed literals.
The runtime was collected for 739 problems. Hence, for 11 problems pre-

processing was not finished before the timeout was reached. The mean of
the runtime was 32.71ms, the minimal runtime was 7.9ms and the maximal
runtime was 713.88ms. Figure 5.1 shows the runtime distribution of universal
reduction relative to the number of clauses arriving on the algorithm. Since
Leo-III performs some processing during clausification, this number might not
correspond to the number of clauses in the input problem. Overall, the per-
formance of this algorithm is acceptable.
Universal reduction was able to remove literals from 184 problems. This

includes the two satisfiable QBF problems fromwhich universal reduction could
remove 4201¹⁹ and 50²⁰ literals. On the Hᴏᴌ problems, universal reduction
could remove between one and seven literals. However, those problems were
all in the domain of set theory (Sᴇᴜ) and software verification (Sᴡᴡ).
Overall, this together with table 5.2 shows that universal reduction is only

useful for certain instances.

19 from the toilet_g_04_01.2-shuffled problem.
20 from the toilet_g_02_01.2-shuffled problem.

81

5 Implementation

0 2000 4000 6000 8000 10000 12000 14000
Size

0

100

200

300

400

500

600

700

800

Ru
nt
im

e(
m
s)

Figure 5.1: Runtime of universal reduction.

SAT BᴀSᴇᴅ CᴏNSᴛᴀNᴛ EXᴛRᴀᴄᴛIᴏN

As metrics for Sᴀᴛ based constant extraction we used the number of proposi-
tional clauses and literals, as reported by ᴘicoSᴀᴛ, both before adding transitivity
constraints and after. We also saved the number of Sᴀᴛ calls and, naturally, the
number of added unit clauses.
To compare this algorithm with the other preprocessing algorithms, we cal-

culated the runtime relative to the number of clauses. Figure 5.2 is a scatter plot
of the runtime. Overall, the algorithm ran between 102.3ms and 2231.02ms
with a mean runtime of 232.78ms and a median runtime of 149.33ms. The Sᴀᴛ
solver was called 40.79 times on average, but because of a single problem with
1250 calls, the median number is only eleven calls.
Unit clauses were added to 76 problems distributed over 8 of the 25 Hᴏᴌ

domains and to the QBF problems. For 38 problems one unit clause was added,
two unit clauses were added to 7 problems, and three unit clauses were added to
18 problems. 13 problems were augmented with more than three unit clauses.
Additional transitivity constraints were added to 248 problems. In the case

of 58 of these problems the algorithm was able to add also add unit clauses to
the prolem.
As the comparison with the other algorithms indicates, Sᴀᴛ based constant

extraction is an effective algorithm. Nevertheless, it still works only for certain
instance domains, and is slower than the other algorithms. Furthermore, the

82

5.3 Benchmarking

0 2000 4000 6000 8000 10000 12000 14000
Size

0

500

1000

1500

2000

2500

Ru
nt
im

e(
m
s)

Figure 5.2: Runtime of Sᴀᴛ based constant extraction.

addition of transitivity constraints seems to be a valuable addition.

PᴀᴛᴛᴇRN Bᴌᴏᴄᴋᴇᴅ CᴌᴀᴜSᴇ EᴌIᴍINᴀᴛIᴏN

In the case of Pattern Blocked Clause Elimination, wemarked problems which
were not equational, problems where two non-pattern literals with flex head
appeared, and problems with one non-pattern literal with flex head. In the
former two cases, pattern blocked clause elimination can not be applied. Fur-
thermore, we also saved the number of clauses removed by this procedure.
Overall, 261 problems were not equational. Of those 261 problems, 124 con-

tained two clauses with flex headed non-patterns. The remaining 137 problems
were candidates for blocked clause elimination.
One problem resulted in an extremely long runtime of 47.5 seconds. This

problem was one of the unsatisfiable QBF problems²¹. The negation of this
problem resulted in long clauses, which in turn inflated the runtime of the
blocked clause elimination algorithm. Because of this outlier the average run-
time was 201.7ms and the median runtime was 25ms with a minimal runtime
of 18.84ms. This includes equational problems. After removing the equa-
tional problems, the median runtime is 31.1ms. Figure 5.3 shows the runtime
of blocked clause elimination and omits the problem with over 40 seconds

21 the lut4_XOR_fOR-shuffled problem.

83

5 Implementation

0 2000 4000 6000 8000 10000 12000 14000
Size

0

5000

10000

15000

20000

25000

Ru
nt
im

e(
m
s)

Figure 5.3: Runtime of pattern blocked clause elimination.

runtime.
The algorithm was able to remove clauses from 37 input problems. For

ten of those problems, only one clause could be removed. For the problem
SYO377ˆ5²² the algorithm could remove 42 clauses.
Blocked clause elimination is seriously constrained by the tight requirements

on the input problems. In those cases where the algorithm is applicable, how-
ever, it was able to remove at least one clause in 27% of the cases.

FIRSᴛ-ᴏRᴅᴇR Rᴇ-ᴇNᴄᴏᴅING

Since first-order re-encoding is done during one iteration over the problem,
the only meaningful metric is the algorithm runtime. The runtime is expected
do be linear in the total number of literals appearing in the input problem.
Figure 5.4 shows a scatter plot of the runtime. The linear behavior is visible.

Overall, the runtime varied between 4.88ms and 389.68ms, with a median
runtime of 9.78ms. The mean runtime was 16.23ms.
As we have already seen, applying first-order re-encoding was detrimental

for the solvability of many problems. Nevertheless, table 5.2 indicates that
seven problems were solved when first-order re-encoding was applied and not

22 This problem from the syntactic domain is available at http://www.cs.miami.edu/~tptp/
cgi-bin/SeeTPTP?Category=Problems&Domain=SYO&File=SYO377^5.p

84

http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Problems&Domain=SYO&File=SYO377^5.p
http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Problems&Domain=SYO&File=SYO377^5.p

5.3 Benchmarking

0 2000 4000 6000 8000 10000 12000 14000
Size

0

100

200

300

400

500

Ru
nt
im

e(
m
s)

Figure 5.4: Runtime of first-order re-encoding.

by the pure Leo-III system. Of those seven problems, three were not solved
by any other configuration. Those three problems were LCL727ˆ5, AGT031ˆ1,
and SYO213ˆ5. Since these problems are from different domains and do not
have any obvious similarities, we suspect that this coincidentally and not the
result of applying first-order re-encoding.

CᴏNᴄᴌᴜSIᴏN
As we have seen, only Sᴀᴛ based constant extraction is clearly beneficial to
the proof search. Pattern blocked clause elimination, in its current iteration,
and universal reduction are only useful in some cases. There is no empirical
evidence that first-order re-encoding is useful at all. Fortunately, all four algo-
rithms have a useful runtime behavior.
Leo-III is a resolution based prover. This means, that it tries to find a proof by

creating new clauses. Blocked clause elimination and universal reduction are
not necessary helpful during this process, since they might remove elements
which are useful during this search process. Constant extraction, on the other
hand, aids this process by adding new, short clauses.

85

6 Insights
This chapter concludes this thesis. In the previous chapters we introduced Hᴏᴌ
and QBF, discussed preprocessing techniques for QBF, described the adaption to
Hᴏᴌ of some of those preprocessing techniques, and the practical implemen-
tation of them. We now set this work into a wider context. To do so, we
present some related work in section 6.1 and suggest some further work in
section 6.2. Section 6.3 concludes the thesis with some final remarks.

6.1 Related Work
Many of the preprocessing techniques for QBF solving were originally devel-
oped for Sᴀᴛ solving. A tool for Sᴀᴛ preprocessing has been SᴀᴛELIᴛᴇ (Eén
and Biere 2005). Among other techniques, it implemented variable elimi-
nation by self-subsuming resolution. Since its publication, it has been sub-
sumed by recent releases of the Sᴀᴛ solver MINISᴀᴛ2¹. Another technique
used for preprocessing is hyper binary resolution (Bacchus and Winter 2004).
Blocked clause elimination was first introduced for Sᴀᴛ by Kullmann (1999)
(cf. Järvisalo, Biere, and Heule 2010).
Preprocessing has received some attention by state of the art theorem provers

for first-order logic. We already discussed the recent application of blocked
clause elimination to Fᴏᴌ. Earlier work in this area was done by Hoder et al.
(2012). This work was motivated by industrial applications of first-order rea-
soning. The authors investigate two kinds of techniques. On one hand, they
present methods for eliminating and simplifying definitions that also result in
a clausification process which preserves the ᴇᴘR fragment. On the other hand,
they present a generalization of the And-Inverter Graph (ᴀIG) datastucture,
which they call Quantified And-Invert Graph (QᴀIG). The authors then use
this datastucture to adapt various preprocessing techniques for Sᴀᴛ to Fᴏᴌ.
As we discussed, QBF and ᴅQBF reasoners are satisfiability checkers. Another

class of problems in this domain is Satisfiability Modulo Theories (Sᴍᴛ). As
the name suggest, Sᴍᴛ languages enrich propositional satisfiability checking

1 See the SᴀᴛELIᴛᴇ homepage: http://minisat.se/SatELite.html

87

http://minisat.se/SatELite.html

6 Insights

with theories such as uninterpreted functions and equality. Systems for solving
Sᴍᴛ problems are commonly built from two parts. A Sᴀᴛ solver reasons on a
propositional abstraction of the formulas generated by the theory reasoner. If
the Sᴀᴛ solver finds a model for a problem, this model is analyzed by the theory
reasoner. If the theory reasoner can create a model for the original problem,
then the process terminates, otherwise the Sᴀᴛ problem is refined (cf. Barrett,
Sebastiani, et al. 2009).
Examples for Sᴍᴛ solvers are Boolector (Niemetz, Preiner, and Biere 2014),

ᴄᴠᴄ4 (Barrett, Conway, et al. 2011), veriᴛ (Bouton et al. 2009), and ᴢ3 (Moura
and Bjørner 2008). Preprocessing is a part of Sᴍᴛ solving andwhile the solving
systems incorporate preprocessing routines, the Sᴍᴛpp (Bonichon et al. 2015)
tool is a standalone preprocessor. Recently, Barbosa, Blanchette, and Fontaine
(2017) presented a method to generate proofs for the results of Sᴍᴛ formula
processing.
While our focus was on theorem proving for Hᴏᴌ, other tasks which can be

automatized exist. One such task is model finding. Model finders try to solve
the problem: Given a Hᴏᴌ formula, is this formula satisfiable? These tools are
especially useful if used as count model finder. If we have a formula of unknown
status, we can apply a theorem prover and also negate the formula and apply
a model finder. If the theorem prover succeeds, we know that the formula is a
theorem. If the model finder succeeds, we know that the problem is counter-
satisfiable. An example of a model finder is Nitpick (Blanchette and Nipkow
2010).
A form of preprocessing is also part of the Sledgehammer tool by (Paulson

and Blanchette 2010). As discussed in subsection 2.3, Sledgehammer calls au-
tomated provers to assist the proof construction in an interactive prover. To
make this process feasible, Sledgehamemr must select a small subset of theo-
rems from the big library of theorems available in interactive provers. The
selected theorems are then added to the problem for the automated prover as
axioms.

6.2 Further Work
In this thesis we only investigated a limited number of QBF and ᴅQBF prepro-
cessing algorithms. The remaining algorithms are a obvious topic to continue
this work. It might be especially fruitful to investigated dependency schemata.
Wimmer, Gitina, et al. (2015) describe a simple dependency schema for ᴅQBF.
The goal of dependency schemata is to determine that some universally quan-
tified variable x in the dependency set of an existentially quantified variable y

88

6.2 Further Work

can be omitted because it will not be used by the Skolem function of y. In such
a situation the variable x can be removed from the dependency set of y. The
authors give a simple sufficient criterion for the independence of two variables
and note that more complex schemata have been developed for QBF.
On the more practical side of things, implementing our preprocessing tech-

niques as a stand-alone tool would enable us to evaluate the effect of the tech-
niques on other theorem provers and automated tools such as model finders.
This is especially interesting for Bᴄᴇ, since Kiesl et al. (2017) report a positive
impact of Bᴄᴇ on solving first-order non-theorem problems. To show the that
a first-order formula is not a theorem, a search for a counter-model is required.
Such a tool would take a Hᴏᴌ formula in ᴛᴘᴛᴘ format as input and output a
new, satisfiability equivalent, formula in the same format. It should also be
able to create prove traces of transformations it applies.
Another further topic is to complete the work on Bᴄᴇ for Hᴏᴌ:

Bᴌᴏᴄᴋᴇᴅ CᴌᴀᴜSᴇ EᴌIᴍINᴀᴛIᴏN

Unfortunately, our discussion of Bᴄᴇ for Hᴏᴌ was very restricted. While we
presented a first implementation of Bᴄᴇ for the automated theorem prover
Leo-III and evaluated its practical feasibility.
The most apparent missing piece is certainly the lack of a proof of soundness

of the Bᴄᴇ procedure. The proof for the redundancy of Fᴏᴌ blocked clauses
given by Kiesl et al. (2017) relies on the Herbrands theorem. This theorem
states, that an equality free Fᴏᴌ formula is satisfiable if and only if every finite
set of ground instances is satisfiable (cf. Fitting 1996). Then in a set of ground
instances of a formula F with a clause C blocked by the literal l, the truth value
of l in an assignment which falsifies C can simply be flipped to satisfy C. This
new assignment will still satisfy all the clauses in F \ {C} which are satisfied
by the old assignment. A slightly more intricate, but similar argument is used
for the case of equality blocked clauses.
A version of the Herbrand theorem for Hᴏᴌ exists. It was given by Miller

(1987) and relies on the notion of expansion-tree proofs. We believe that this
can be used to prove the soundness of our variant of blocked clause elimination.
Secondly, the lack of support for equality in our variant of Bᴄᴇ is a very

undesirable property. Again we hypothesize, that the approach by Kiesl et al.
(2017) can be extended to Hᴏᴌ. Handling flex and rigid literals would become
more complex, and so would deciding validity of flat l-resolvents. However,
the practical implementation of Bᴄᴇ for Fᴏᴌ with equality already abandoned
full congruence closure in favor of a greatly simplified algorithm. Hence, an
incomplete algorithm for deciding the validity might be enough. Further-

89

6 Insights

more, the notion of flattening tightly corresponds to unification constraints
generated during pre-unification (cf. Huet 1975).
Overall, a fine analysis of the concept of blocking literals and clauses in the

context of Hᴏᴌ and especially resolution based provers for Hᴏᴌ would be a
fruitful undertaking.

BIᴛ PRᴇᴄISᴇ RᴇᴀSᴏNING ᴡIᴛH HOL

In hard- and software verification, reasoning on the level of bits its often rel-
evant for the verification process. In practice QBF and ᴅQBF formulas can be
used to do this. Another formalism used in this domain is bit vector logic.
Those logics provide operators on vectors of bits, such as element wise dis-

junction and shift operators. Variables range over bit vectors of fixed width.
The solving complexity depends on the chosen language features (cf. Biere
2014).
As we have seen, Hᴏᴌ can also be used to describe Boolean problems. Com-

mon bit vector logics can probably be expressed in Hᴏᴌ by choosing functions
on Booleans with the appropriate arity. This would enable the users to for-
mulate some properties in the general language of Hᴏᴌ. Unfortunately, our
investigation into solving QBF and ᴅQBF problems with Hᴏᴌ theorem provers
has shown, that they do not perform very well on such problems.
A fruitful way of approaching the problem of bit precise reasoning in Hᴏᴌ

could be to combine bit vector and QBF reasoners with Hᴏᴌ theorem provers.
One major challenge would be the extraction of Boolean problems from the
overall clause set.

6.3 Conclusion
This thesis started with an introduction into two distinct logical languages.
First we described Higher-order logic, a logic which allows quantification
over functions and properties. Then we presented quantified Boolean formu-
las, a generalization of propositional logic, which allows quantification over
Boolean values. Those two logics are quite distinct. Higher-order logic is un-
decidable, which quantified Boolean formulas are not. On the other hand, we
showed that QBFs are a fragment of Hᴏᴌ. We then focused on preprocessing
techniques for QBF and presented adaptions of those techniques to the task of
proving Hᴏᴌ formulas.
Overall we introduced four techniques: Universal reduction, first-order re-

encoding, Sᴀᴛ based constant extraction, and pattern blocked clause elimina-

90

6.3 Conclusion

tion without equality. Not only were they discussed theoretically, but they
were also implemented for the Leo-III system. We also evaluated the imple-
mentations empirically. Finally, we discussed related work and suggested var-
ious ways to continue working on this topic.
Our work connected two worlds: The world of Hᴏᴌ and the world of QBF.

While QBF is fragment of Hᴏᴌ on the theoretical level, the world of QBF turns
out to be much different. Through the use of translation tools, we were able
to show, that QBF and ᴅQBF problems are very hard, even intractable, for state
of the art Hᴏᴌ provers. Preprocessing methods for QBF, on the other hand,
struggle with the expressiveness of Hᴏᴌ.
While our benchmarks show a promising impact of our preprocessing tech-

niques, we believe, that this comparison is the main contribution of the diplo-
ma thesis at hand.

91

Bibliography
Alama, Jesse (2016). «The Lambda Calculus». The Stanford Encyclopedia of Phi-
losophy. Ed. by Edward N. Zalta. Spring 2016. Metaphysics Research Lab,
Stanford University.

Andrews, Peter Bruce (1971). «Resolution in Type Theory».The Journal of Sym-
bolic Logic 36, pp. 414–432. ᴅᴏI: 10.2307/2269949.

Andrews, Peter Bruce (1989). «On connections and higher-order logic». Jour-
nal of Automated Reasoning 5.3, pp. 257–291. ᴅᴏI: 10.1007/BF00248320.

Andrews, Peter Bruce (2014). «Church’s Type Theory». The Stanford Ency-
clopedia of Philosophy. Ed. by Edward N. Zalta. Spring 2014. Metaphysics
Research Lab, Stanford University.

Bacchus, Fahiem and Jonathan Winter (2004). «Effective Preprocessing with
Hyper-Resolution and Equality Reduction». Theory and Applications of Sat-
isfiability Testing: 6th International Conference. Selected Revised Papers. Ed. by
Enrico Giunchiglia and Armando Tacchella. Berlin, Heidelberg: Springer,
pp. 341–355. ᴅᴏI: 10.1007/978-3-540-24605-3_26.

Barbosa, Haniel, Jasmin Christian Blanchette, and Pascal Fontaine (2017).
«Scalable Fine-Grained Proofs for Formula Processing». CADE 26: 26th In-
ternational Conference on Automated Deduction. Proceedings. Ed. by Leonardo
de Moura. Cham: Springer International Publishing, pp. 398–412. ᴅᴏI:
10.1007/978-3-319-63046-5_25.

Barrett, Clark, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli (2011).
«CVC4». Computer Aided Verification: 23rd International Conference, CAV
2011. Proceedings. Ed. by Ganesh Gopalakrishnan and Shaz Qadeer. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 171–177. ᴅᴏI: 10.1007/978-3-
642-22110-1_14.

Barrett, Clark, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli (2009).
«Satisfiability Modulo Theories». Handbook of Satisfiability. Ed. by Armin
Biere,Marijn J.H. Heule, Hans vanMaaren, and TobyWalsh. Vol. 185. Fron-
tiers in Artificial Intelligence and Applications. Amsterdam, The Nether-
lands: IᴏS Press. Chap. 26, pp. 825–885. ᴅᴏI: 10.3233/978-1-58603-929-
5-825.

93

http://dx.doi.org/10.2307/2269949
http://dx.doi.org/10.1007/BF00248320
http://dx.doi.org/10.1007/978-3-540-24605-3_26
http://dx.doi.org/10.1007/978-3-319-63046-5_25
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.3233/978-1-58603-929-5-825
http://dx.doi.org/10.3233/978-1-58603-929-5-825

Bibliography

Benzmüller, Christoph (1999). «Extensional Higher-Order Paramodulation
and RUE-Resolution». Automated Deduction – CADE-16. Ed. by Harald
Ganzinger. Lecture Notes in Computer Science 1632. Springer, pp. 399–413.
ᴅᴏI: 10.1007/3-540-48660-7_39.

Benzmüller, Christoph (2002). «Comparing Approaches to Resolution based
Higher-Order Theorem Proving». Synthese 133.1–2, pp. 203–235. ᴅᴏI: 10 .
1023/A:1020840027781.

Benzmüller, Christoph (2015). «Higher-Order Automated Theorem Provers».
All about Proofs, Proof for All. Ed. by David Delahaye and BrunoWoltzenlo-
gel Paleo. Mathematical Logic and Foundations. London, ᴜᴋ: College Pub-
lications, pp. 171–214. ISBN: 978-1-84890-166-7.

Benzmüller, Christoph and Michael Kohlhase (1998). «LEO – A Higher-
Order Theorem Prover». Automated Deduction – CADE-15. Ed. by Claude
Kirchner and Hélène Kirchner. Lecture Notes in Computer Science 1421.
Springer, pp. 139–143. ᴅᴏI: 10.1007/BFb0054256.

Benzmüller, Christoph and Dale Miller (2014). «Automation of Higher-Order
Logic». Handbook of the History of Logic, Volume 9 – Computational Logic. Ed.
by Dov M. Gabbay, Jörg H. Siekmann, and John Woods. North Holland,
Elsevier, pp. 215–254. ᴅᴏI: 10.1016/B978-0-444-51624-4.50005-8.

Benzmüller, Christoph, Lawrence C. Paulson, Nik Sultana, and Frank Theiß
(2015). «The Higher-Order Prover LEO-II». Journal of Automated Reasoning
55.4, pp. 389–404. ᴅᴏI: 10.1007/s10817-015-9348-y.

Benzmüller, Christoph and BrunoWoltzenlogel Paleo (2015). «Higher-Order
Modal Logics: Automation and Applications». Reasoning Web 2015. Ed. by
Adrian Paschke and Wolfgang Faber. Lecture Notes in Computer Science
9203. Berlin, Germany: Springer, pp. 32–74. ᴅᴏI: 10 . 1007 / 978 - 3 - 319 -
21768-0_2.

Bertot, Yves and Pierre Castran (2010). Interactive Theorem Proving and Program
Development: Coq’Art The Calculus of Inductive Constructions. 1st ed. Springer
Publishing Company, Incorporated. ᴅᴏI: 10.1007/978-3-662-07964-5.

Biere, Armin (2008). «PicoSAT Essentials». Journal on Satisfiability, Boolean
Modeling and Computation 4, pp. 75–97.

Biere, Armin (2014). «Challenges in Bit-Precise Reasoning». Proceedings of the
14th Conference on Formal Methods in Computer-Aided Design. FMCAD ’14.
Lausanne, Switzerland: FMCAD Inc, 2:3–2:3. ISBN: 978-0-9835678-4-4.

Biere, Armin, Florian Lonsing, and Martina Seidl (2011). «Blocked Clause
Elimination for QBF». International Conference on Automated Deduction.
Vol. 6803. Lecture Notes in Computer Science. Springer. Berlin, Heidel-
berg, pp. 101–115. ᴅᴏI: 10.1007/978-3-642-22438-6_10.

94

http://dx.doi.org/10.1007/3-540-48660-7_39
http://dx.doi.org/10.1023/A:1020840027781
http://dx.doi.org/10.1023/A:1020840027781
http://dx.doi.org/10.1007/BFb0054256
http://dx.doi.org/10.1016/B978-0-444-51624-4.50005-8
http://dx.doi.org/10.1007/s10817-015-9348-y
http://dx.doi.org/10.1007/978-3-319-21768-0_2
http://dx.doi.org/10.1007/978-3-319-21768-0_2
http://dx.doi.org/10.1007/978-3-662-07964-5
http://dx.doi.org/10.1007/978-3-642-22438-6_10

Bibliography

Blanchette, Jasmin Christian and Tobias Nipkow (2010). «Nitpick: A Coun-
terexample Generator for Higher-Order Logic Based on a Relational Model
Finder». International Conference on Interactive Theorem Proving. Springer,
pp. 131–146. ᴅᴏI: 10.1007/978-3-642-14052-5_11.

Bogaerts, Bart, Tomi Janhunen, and Shahab Tasharrofi (2016). Solving QBF
Instances with Nested SAT Solvers.

Bonichon, Richard, David Déharbe, Pablo Dobal, and Cláudia Tavares (2015).
«SMTpp : preprocessors and analyzers for SMT-LIB».

Boolos, George (1987). «A Curious Inference». Journal of Philosophical Logic
16.1, pp. 1–12.

Bouton, Thomas, Diego Caminha B. De Oliveira, David Déharbe, and
Pascal Fontaine (2009). «veriT: An Open, Trustable and Efficient SMT-
Solver». Proceedings of the 22Nd International Conference on Automated
Deduction. CADE-22. Montreal, P.Q., Canada: Springer, pp. 151–156. ᴅᴏI:
10.1007/978-3-642-02959-2_12.

Brown, Chad E. (2013). «Reducing Higher-Order Theorem Proving to a Se-
quence of SAT Problems». Journal of Automated Reasoning 51.1, pp. 57–77.
ᴅᴏI: 10.1007/s10817-013-9283-8.

Bryant, Randal E. and Miroslav N. Velev (2000). «Boolean Satisfiability with
Transitivity Constraints». Computer Aided Verification: 12th International
Conference. Proceedings. Ed. by E. Allen Emerson and Aravinda Prasad Sistla.
Berlin, Heidelberg: Springer, pp. 85–98. ᴅᴏI: 10.1007/10722167_10.

Büning, Hans Kleine and Uwe Bubeck (2009). «Theory of Quantified
Boolean Formulas». Handbook of Satisfiability. Ed. by Armin Biere, Mar-
ijn J.H. Heule, Hans van Maaren, and Toby Walsh. Vol. 185. Frontiers in
Artificial Intelligence and Applications. Amsterdam, The Netherlands: IᴏS
Press. Chap. 23, pp. 735–760. ᴅᴏI: 10.3233/978-1-58603-929-5-825.

Büning, Hans Kleine, Karpinski Karpinski, and Flögel Flogel (1995). «Reso-
lution for Quantified Boolean Formulas». Information and Computation 117.1,
pp. 12–18. ᴅᴏI: 10.1006/inco.1995.1025.

Church, Alonzo (1940). «A formulation of the simple theory of types». The
Journal of Symbolic Logic 5.2, pp. 56–68. ᴅᴏI: 10.2307/2266170.

Devriendt, Jo, Bart Bogaerts, and Maurice Bruynooghe (2014). «BreakIDGlu-
cose: On the importance of row symmetry in SAT». Proceedings 4th Interna-
tional Workshop on the Cross-Fertilization Between CSP and SAT, pp. 1–17.

Eén, Niklas and Armin Biere (2005). «Effective Preprocessing in SAT
Through Variable and Clause Elimination». Theory and Applications of
Satisfiability Testing: 8th International Conference. Proceedings. Ed. by Fahiem
Bacchus and Toby Walsh. Berlin, Heidelberg: Springer, pp. 61–75. ᴅᴏI:
10.1007/11499107_5.

95

http://dx.doi.org/10.1007/978-3-642-14052-5_11
http://dx.doi.org/10.1007/978-3-642-02959-2_12
http://dx.doi.org/10.1007/s10817-013-9283-8
http://dx.doi.org/10.1007/10722167_10
http://dx.doi.org/10.3233/978-1-58603-929-5-825
http://dx.doi.org/10.1006/inco.1995.1025
http://dx.doi.org/10.2307/2266170
http://dx.doi.org/10.1007/11499107_5

Bibliography

Egly, Uwe, Martina Seidl, Hans Tompits, Stefan Woltran, and Michael Zolda
(2004). «Comparing Different Prenexing Strategies for Quantified Boolean
Formulas».Theory and Applications of Satisfiability Testing – SAT 2004. Ed. by
Enrico Giunchiglia and Armando Tacchella. Berlin, Heidelberg: Springer,
pp. 214–228. ᴅᴏI: 10.1007/978-3-540-24605-3_17.

Enderton, Herbert Bruce (2015). «Second-order andHigher-order Logic».The
Stanford Encyclopedia of Philosophy. Ed. by Edward N. Zalta. Fall 2015. Meta-
physics Research Lab, Stanford University.

Finkbeiner, Bernd and Leander Tentrup (2014). «Theory and Applications of
Satisfiability Testing - SAT 2014. Proceedings». SAT. Ed. by Carsten Sinz
and Uwe Egly. Vol. 8561. Lecture Notes in Computer Science. Springer,
pp. 243–251. ᴅᴏI: 10.1007/978-3-319-09284-3_19.

Fitting, Melvin (1996). First-Order Logic and Automated Theorem Proving.
2nd ed. Texts in Computer Science. New York: Springer. ᴅᴏI: 10.1007/978-
1-4612-2360-3.

Fröhlich, Andreas, Gergely Kovásznai, and Armin Biere (2012). «A DPLL Al-
gorithm for SolvingDQBF». Proceedings of the InternationalWorkshop on Prag-
matics of SAT. Trento, Italy.

Fröhlich, Andreas, Gergely Kovásznai, Armin Biere, and Helmut Veith (2014).
«iDQ: Instantiation-Based DQBF Solving.» Proceedings of the International
Workshop on Pragmatics of SAT.

Gitina, Karina, Sven Reimer, Matthias Sauer, Ralf Wimmer, Christoph Scholl,
and Bernd Becker (2013). «Equivalence checking of partial designs using de-
pendency quantified Boolean formulae». International Conference on Computer
Design. Iᴇᴇᴇ, pp. 396–403. ᴅᴏI: 10.1109/ICCD.2013.6657071.

Gitina, Karina, Ralf Wimmer, Sven Reimer, Matthias Sauer, Christoph Scholl,
and Bernd Becker (2015). «SolvingDQBFThroughQuantifier Elimination».
Proceedings of the 2015 Design, Automation & Test in Europe Conference & Ex-
hibition. DATE ’15. Grenoble, France: ᴇᴅᴀ Consortium, pp. 1617–1622. ISBN:
978-3-9815370-4-8.

Giunchiglia, Enrico, PaoloMarin, andMassimoNarizzano (2010). «sQueezeBF:
An Effective Preprocessor for QBFs Based on Equivalence Reasoning». The-
ory and Applications of Satisfiability Testing – SAT 2010. Ed. by Ofer
Strichman and Stefan Szeider. Berlin, Heidelberg: Springer, pp. 85–98. ᴅᴏI:
10.1007/978-3-642-14186-7_9.

Gödel, Kurt (1930). «Die Vollständigkeit der Axiome des logischen Funktio-
nenkalküls». Monatshefte für Mathematik und Physik 37.1, pp. 349–360. ᴅᴏI:
10.1007/BF01696781.

Gödel, Kurt (1931). «Über formal unentscheidbare Sätze der Principia Mathe-
matica und verwandter Systeme I». Monatshefte für Mathematik und Physik

96

http://dx.doi.org/10.1007/978-3-540-24605-3_17
http://dx.doi.org/10.1007/978-3-319-09284-3_19
http://dx.doi.org/10.1007/978-1-4612-2360-3
http://dx.doi.org/10.1007/978-1-4612-2360-3
http://dx.doi.org/10.1109/ICCD.2013.6657071
http://dx.doi.org/10.1007/978-3-642-14186-7_9
http://dx.doi.org/10.1007/BF01696781

Bibliography

38.1, pp. 173–198. ᴅᴏI: 10.1007/BF01700692.
Henkin, Leon (1950). «Completeness in the Theory of Types». The Journal of
Symbolic Logic 15.2, pp. 81–91. ᴅᴏI: 10.2307/2266967.

Heule, Marijn J.H., Martina Seidl, and Armin Biere (2014). «A Unified Proof
System for QBF Preprocessing». International Joint Conference on Automated
Reasoning. Vol. 8562. Lecture Notes in Computer Science. Springer, pp. 91–
106. ᴅᴏI: 10.1007/978-3-319-08587-6_7.

Hoder, Krystof, Zurab Khasidashvili, Konstantin Korovin, and Andrei
Voronkov (2012). «Preprocessing techniques for first-order clausification».
Proceedings of the 12th Conference on Formal Methods in Computer-Aided
Design. Cambridge, UK: IEEE, pp. 44–51. ISBN: 978-0-9835678-2-0.

Huet, Gerard Pierre (1972). «Constrained Resolution: A Complete Method for
Higher-order Logic.» PhD thesis. Cleveland, ᴏH, ᴜSᴀ.

Huet, Gerard Pierre (1975). «A unification algorithm for typed λ-calculus».The-
oretical Computer Science 1.1, pp. 27–57. ᴅᴏI: 10.1016/0304-3975(75)90011-0.

Janota, Mikoláš, Charles Jordan, Will Klieber, Florian Lonsing, Martina Seidl,
and Allen VanGelder (2016). «TheQBFGallery 2014: TheQBF competition
at the FLoC olympic games». Journal on Satisfiability, Boolean Modeling and
Computation 9, pp. 187–206.

Janota, Mikoláš, William Klieber, Joao Marques-Silva, and Edmund Clarke
(2012). «Solving QBF with counterexample guided refinement». Theory and
Applications of Satisfiability Testing – SAT 2012. Springer, pp. 114–128. ᴅᴏI:
10.1016/j.artint.2016.01.004.

Janota, Mikoláš and Joao Marques-Silva (2015). «Expansion-based QBF solv-
ing versus Q-resolution». Theoretical Computer Science 577, pp. 25–42. ᴅᴏI:
10.1016/j.tcs.2015.01.048.

Järvisalo, Matti, Armin Biere, and Marijn J.H. Heule (2010). «Blocked Clause
Elimination». Tools and Algorithms for the Construction and Analysis of Systems.
Ed. by Javier Esparza and Rupak Majumdar. Berlin, Heidelberg: Springer,
pp. 129–144. ᴅᴏI: 10.1007/978-3-642-12002-2_10.

Järvisalo, Matti, Marijn J.H. Heule, and Armin Biere (2012). «Inprocessing
Rules». Automated Reasoning, pp. 355–370. ᴅᴏI: 10.1007/978-3-642-31365-
3_28.

Kiesl, Benjamin, Martin Suda, Martina Seidl, Hans Tompits, and Armin Biere
(2017). «Blocked Clauses in First-Order Logic». ArXiv e-prints. arXiv: 1702.
00847 [cs.LO].

Knight, Kevin (1989). «Unification: A Multidisciplinary Survey». ACM Com-
puting Surveys 21.1, pp. 93–124. ᴅᴏI: 10.1145/62029.62030.

Kovásznai, Gergely (2015). «A Survey onDQBF: Formulas, Applications, Solv-
ing Approaches». QUANTIFY 2015, p. 8.

97

http://dx.doi.org/10.1007/BF01700692
http://dx.doi.org/10.2307/2266967
http://dx.doi.org/10.1007/978-3-319-08587-6_7
http://dx.doi.org/10.1016/0304-3975(75)90011-0
http://dx.doi.org/10.1016/j.artint.2016.01.004
http://dx.doi.org/10.1016/j.tcs.2015.01.048
http://dx.doi.org/10.1007/978-3-642-12002-2_10
http://dx.doi.org/10.1007/978-3-642-31365-3_28
http://dx.doi.org/10.1007/978-3-642-31365-3_28
http://arxiv.org/abs/1702.00847
http://arxiv.org/abs/1702.00847
http://dx.doi.org/10.1145/62029.62030

Bibliography

Kullmann,Oliver (1999). «On a generalization of extended resolution».Discrete
Applied Mathematics 96, pp. 149–176. ᴅᴏI: 10.1016/S0166-218X(99)00037-2.

Lonsing, Florian, Fahiem Bacchus, Armin Biere, Uwe Egly, andMartina Seidl
(2015). «Enhancing search-based QBF solving by dynamic blocked clause
elimination». Logic for Programming, Artificial Intelligence, and Reasoning.
Springer, pp. 418–433. ᴅᴏI: 10.1007/978-3-662-48899-7_29.

Lonsing, Florian and Armin Biere (2010). «DepQBF: A dependency-aware
QBF solver». Journal on Satisfiability, Boolean Modeling and Computation 7,
pp. 71–76.

Miller, Dale (1987). «A compact representation of proofs». Studia Logica 46.4,
pp. 347–370. ᴅᴏI: 10.1007/BF00370646.

Moschovakis, Joan (2015). «Intuitionistic Logic». The Stanford Encyclopedia of
Philosophy. Ed. by Edward N. Zalta. Spring 2015. Metaphysics Research Lab,
Stanford University.

Moura, Leonardo de and Nikolaj Bjørner (2008). «Z3: An Efficient SMT
Solver». Tools and Algorithms for the Construction and Analysis of Systems: 14th
International Conference. Proceedings. Ed. by C.R. Ramakrishnan and Jakob
Rehof. Berlin, Heidelberg: Springer, pp. 337–340. ᴅᴏI: 10.1007/978-3-540-
78800-3_24.

Niemetz, Aina, Mathias Preiner, and Armin Biere (2014). «Boolector 2.0 sys-
tem description». Journal on Satisfiability, Boolean Modeling and Computation
9, pp. 53–58.

Nipkow, Tobias (1993). «Functional Unification of Higher-Order Patterns».
Proceedings of Eighth Annual IEEE Symposium on Logic in Computer Science.
Iᴇᴇᴇ, pp. 64–74. ᴅᴏI: 10.1109/LICS.1993.287599.

Nipkow, Tobias, Lawrence C. Paulson, and Markus Wenzel (2002). Isabelle/-
HOL – A Proof Assistant for Higher-Order Logic. Vol. 2283. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer. ISBN: 3-540-43376-7.

Parikh, Rohit Jivanlal (1973). «Some results on the length of proofs». Transac-
tions of the American Mathematical Society 177, pp. 29–36. ᴅᴏI: 10.1090/S0002-
9947-1973-0432416-X.

Paulson, Lawrence C. and Jasmin Christian Blanchette (2010). «Three Years
of Experience with Sledgehammer, a Practical Link Between Automatic and
Interactive Theorem Provers». IWIL@LPAR. Vol. 2. EPiC Series.

Peterson, Gary L. and John H. Reif (1979). «Multiple-person Alternation». Pro-
ceedings of the 20th Annual Symposium on Foundations of Computer Science.
Washington, ᴅᴄ, ᴜSᴀ: Iᴇᴇᴇ Computer Society, pp. 348–363. ᴅᴏI: 10.1109/
SFCS.1979.25.

Pigorsch, Florian and Christoph Scholl (2010). «An AIG-Based QBF-solver
Using SAT for Preprocessing». Proceedings of the 47th Design Automation

98

http://dx.doi.org/10.1016/S0166-218X(99)00037-2
http://dx.doi.org/10.1007/978-3-662-48899-7_29
http://dx.doi.org/10.1007/BF00370646
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1109/LICS.1993.287599
http://dx.doi.org/10.1090/S0002-9947-1973-0432416-X
http://dx.doi.org/10.1090/S0002-9947-1973-0432416-X
http://dx.doi.org/10.1109/SFCS.1979.25
http://dx.doi.org/10.1109/SFCS.1979.25

Bibliography

Conference. DAC ’10. Anaheim, California: ᴀᴄᴍ, pp. 170–175. ᴅᴏI: 10.1145/
1837274.1837318.

Pulina, Luca (2016). «The Ninth QBF Solvers Evaluation – Preliminary Re-
port». Proceedings of the 4th International Workshop on Quantified Boolean For-
mulas (QBF 2016). Ed. by Florian Lonsing and Martina Seidl. Bordeaux,
France.

Robinson, John Alan (1965). «A Machine-Oriented Logic Based on the Reso-
lution Principle». Journal of the ACM 12.1, pp. 23–41. ᴅᴏI: 10.1145/321250.
321253.

Seidl, Martina, Florian Lonsing, and Armin Biere (2012). «qbf2epr: A Tool for
Generating EPR Formulas from QBF». Third Workshop on Practical Aspects
of Automated Reasoning, p. 139.

Shostak, Robert E. (1978). «AnAlgorithm for ReasoningAbout Equality».Com-
munications of the ACM 21.7, pp. 583–585. ᴅᴏI: 10.1145/359545.359570.

Steen, Alexander, MaxWisniewski, and Christoph Benzmüller (2016). «Agent-
Based HOL Reasoning». Mathematical Software – ICMS 2016. Ed. by
Gert-Martin Greuel, Thorsten Koch, Peter Paule, and Andrew Sommese.
Vol. 9725. Lecture Notes in Computer Science. Berlin, Germany: Springer,
pp. 75–81. ᴅᴏI: 10.1007/978-3-319-42432-3_10.

Steen, Alexander, MaxWisniewski, and Christoph Benzmüller (2017). «Going
Polymorphic - TH1 Reasoning for Leo-III». IWIL@LPAR 2017 Workshop
and LPAR-21 Short Presentations. Ed. by Thomas Eiter, David Sands, Geoff
Sutcliffe, and Andrei Voronkov. Vol. 1. Kalpa Publications in Computing.
Maun, Botswana: EasyChair.

Sutcliffe, Geoff (2009). «The TPTP Problem Library and Associated Infras-
tructure: The FOF and CNF Parts, v3.5.0». Journal of Automated Reasoning
43.4, pp. 337–362. ᴅᴏI: 10.1007/s10817-009-9143-8.

Sutcliffe, Geoff and Christoph Benzmüller (2010). «Automated Reasoning in
Higher-Order Logic using the TPTP THF Infrastructure». Journal of For-
malized Reasoning 3.1, pp. 1–27. ISSN: 1972-5787.

Sutcliffe, Geoff, Jürgen Zimmer, and Stephan Schulz (2003). «Communication
Formalisms for Automated Theorem ProvingTools». Proceedings of theWork-
shop on Agents and Automated Reasoning, 18th International Joint Conference on
Artificial Intelligence, pp. 52–57.

Tseitin, Grigori Samuilovich (1983). «On the Complexity of Derivation in
Propositional Calculus». Automation of reasoning. Berlin Heidelberg: Sprin-
ger, pp. 466–483. ᴅᴏI: 10.1007/978-3-642-81955-1_28.

Wimmer, Ralf, Karina Gitina, Jennifer Nist, Christoph Scholl, and Bernd
Becker (2015). «Preprocessing for DQBF». Theory and Applications of Sat-
isfiability Testing – SAT 2015. Ed. by Marijn J.H. Heule and Sean Weaver.

99

http://dx.doi.org/10.1145/1837274.1837318
http://dx.doi.org/10.1145/1837274.1837318
http://dx.doi.org/10.1145/321250.321253
http://dx.doi.org/10.1145/321250.321253
http://dx.doi.org/10.1145/359545.359570
http://dx.doi.org/10.1007/978-3-319-42432-3_10
http://dx.doi.org/10.1007/s10817-009-9143-8
http://dx.doi.org/10.1007/978-3-642-81955-1_28

Bibliography

Vol. 9340. Lecture Notes in Computer Science. Springer, pp. 173–190. ᴅᴏI:
10.1007/978-3-319-24318-4_13.

Wimmer, Ralf, Sven Reimer, PaoloMarin, and Bernd Becker (2017). «HQSpre
– An Effective Preprocessor for QBF andDQBF».Tools and Algorithms for the
Construction and Analysis of Systems: 23rd International Conference. Proceedings,
Part I. Ed. by Axel Legay andTizianaMargaria. Berlin, Heidelberg: Springer,
pp. 373–390. ᴅᴏI: 10.1007/978-3-662-54577-5_21.

Wisniewski, Max, Alexander Steen, and Christoph Benzmüller (2014). «The
Leo-III Project». Joint Automated Reasoning Workshop and Deduktionstreffen.
Ed. by Alexander Bolotov and Manfred Kerber, p. 38.

Wisniewski, Max, Alexander Steen, and Christoph Benzmüller (2015). «LeoP-
ARD – A Generic Platform for the Implementation of Higher-Order
Reasoners». Intelligent Computer Mathematics – CICM 2015. Ed. by Manfred
Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge.
Vol. 9150. Lecture Notes in Computer Science. Springer, pp. 325–330. ᴅᴏI:
10.1007/978-3-319-20615-8_22.

Wisniewski, Max, Alexander Steen, Kim Kern, and Christoph Benzmüller
(2016). «Effective Normalization Techniques for HOL». Automated Reason-
ing – 8th International Joint Conference. Ed. by Nicola Olivetti and Ashish
Tiwari. Vol. 9706. Lecture Notes in Computer Science. Springer, pp. 362–
370. ᴅᴏI: 10.1007/978-3-319-40229-1_25.

100

http://dx.doi.org/10.1007/978-3-319-24318-4_13
http://dx.doi.org/10.1007/978-3-662-54577-5_21
http://dx.doi.org/10.1007/978-3-319-20615-8_22
http://dx.doi.org/10.1007/978-3-319-40229-1_25

Index

And-Inverter Graph, 87

Backbone Variable, 43
Binder, 13
Bit Vector Logic, 90
Blocked Clause, 44
Blocked Clause Elimination, 54, 83

Church’s Type Theory, 10
Clause, 19
Clause Form, 22
Clausification, 22
Cleansed Formula, 30
CNF, see Conjunctive Normal

Form
Conjunctive Normal Form, 29
Constant Extraction, 46, 82
Constant Literal, 48
Coq, 16
Covered Literal, 44, 45

Dependency Schema, 88
Dependency Set, 38
Dependently Quantified Boolean

Formulas, 37
DepQBF, 36
DQBF, see Dependently Quanti-

fied Boolean Formulas

Equality Blocked, 57

First-order Re-encoding, 65, 84

Flat l-resolvent, 57
Flattening, 56
Flex Head, 58

Head Symbol, 58
Henkin Semantic, 13
Henkin Valid, see Validity
Hidden Literal, 44
HOL, see Higher-order Logic
HQS, 40

IDQ, 39
Interpretation

Henkin, 15
Standard, 14

Isabelle/HOL, 16, 17

Java Native Interface, 72
JNI, see Java Native Interface

λ-calculus, 17
Lᴇᴏ-II, 16
Leo-III, 23
LeoPARD, 23
Literal, 30
Logic

First-order Logic, 9
Higher-order Logic, 9
Modal Logic, 23
Second-order Logic, 9
Type Theory, 10

Matrix, 30

101

Index

Model, 15
Model Finding, 88
Monotonic Variable, 43
Most General Unifier, 21

Negative Normal Form, 30
NNF, see Negative Normal Form

Paramodulation, 24
Pattern, 21
Pattern Blocked Clause, 60
PicoSAT, 71
Polarity, 19, 31
Pre-Unification, 21
Predicate, 25, 55
Prefix, 30
Primitive Substitution, 22, 66
Primitive Types, 11
Pure Literal, 47

Q-resolution, 31
QBCE, see Quantified Blocked

Clause Elimination
QBF, see Quantified Boolean For-

mula
QBF Fragment, 27
QBFEVAL’16, 35
QSTS, 36
Quantified Blocked Clause Elimi-

nation, 37, 54
Quantified Boolean Formula, 27,

28

RAReQS, 35
Resolution, 19
Rigid Head, 58
RUE-resolution, 19

Satallax, 17
Satisfiability Modulo Theories, 87
Simple Type Theory, see Church’s

Type Theory

Skolem Function, 38
Skolem Functions, 23
Skolemization, 23
Sledgehammer, 16, 88
SMT, see Satisfiability Modulo The-

ories
Stack, 73
Standard Frame, 13
Standard Semantic, 13
Standard Valid, see Validity
Substitution, 18
SystemOnTPTP, 26

TPTP, 24
Transitivity Constraint, 51

Unification Constraint, 20
Unifier, 20
Unit Clause, 47
Unit Literal, 47
Universal Reduction, 32, 45, 81
Unsatisfiability Core, 71

Validity, 15

102

	Introduction
	Higher-order Logic
	The Syntax
	Two Semantics
	Automating Higher-order Logic
	Aspects of Proof Calculi for HOL
	The Leo-III Prover
	The TPTP Infrastructure

	Quantified Boolean Formulas
	The Structure of Quantified Boolean Formulas
	The Solving Pipeline
	Dependently Quantified Boolean Formulas

	Preprocessing Techniques
	Preprocessing for QBF and DQBF
	Universal Reduction
	Constant Extraction
	SAT Based Constant Extraction

	Blocked Clause Elimination
	First-order Blocked Clause Elimination
	Higher-order Blocked Clause Elimination

	First-order Re-encoding

	Implementation
	Aspects of the Implementation
	Bindings for PicoSAT

	From QBF to HOL: QBFToys
	Benchmarking
	Empirical Results

	Insights
	Related Work
	Further Work
	Conclusion

	Bibliography
	Index

