Understanding and Evaluating SMT Solvers

Hans-Jörg Schurr KU Leuven October 20, 2025

Part I **Understanding SMT Solvers**

An Example in a Bottle

- 1. We produce 1L, 2L, and 3L bottles.
- 2. The price of a bottle is the volume plus four times the wall thickness (in mm).
- 3. The price must be less than 4€.
- 4. If the new machine is broken, we cannot produce 3L bottles, and the wall thickness must be more than 1mm.
- 5. The new machine is broken.
- 6. For all bottle sizes, the all thickness can at most be the volume in liters.

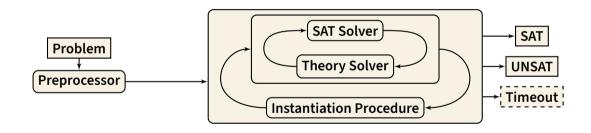
An Example in a Bottle

- 1. We produce 1L, 2L, and 3L bottles.
- 2. The price of a bottle is the volume plus four times the wall thickness (in mm).
- 3. The price must be less than 4€.
- 4. If the new machine is broken, we cannot produce 3L bottles, and the wall thickness must be more than 1mm.
- 5. The new machine is broken.
- 6. For all bottle sizes, the all thickness can at most be the volume in liters.

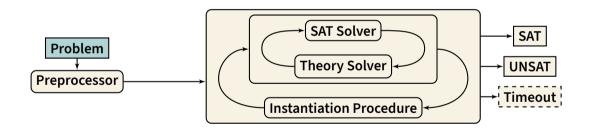
To solve this, we must understand:

- Logic: and, if then
- Arithmetic: four times the wall thickness
- Universal statements: for all

An Example in a Bottle


- 1. We produce 1L, 2L, and 3L bottles.
- 2. The price of a bottle is the volume plus four times the wall thickness (in mm).
- 3. The price must be less than 4€.
- 4. If the new machine is broken, we cannot produce 3L bottles, and the wall thickness must be more than 1mm.
- The new machine is broken.
- 6. For all bottle sizes, the all thickness can at most be the volume in liters.

To solve this, we must understand:


- Logic: and, if then
- Arithmetic: four times the wall thickness
- Universal statements: for all

This is **Satisfiability Modulo Theories**

SMT Solving As A Diagram

SMT Solving As A Diagram

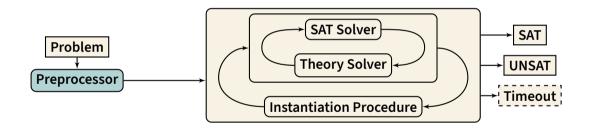
An Example: Problem Specification

- 1. We produce 1L, 2L, and 3L bottles.
- 2. The price of a bottle is the volume plus four times the wall thickness (in mm).
- 3. The price must be less than 4€.
- 4. If the new machine is broken, we cannot produce 3L bottles, and the wall thickness must be more than 1mm.
- 5. The new machine is broken.
- For all bottle sizes, the wall thickness in millimetre can at most be the volume in liters.

An Example: Problem Specification

- 1. We produce 1L, 2L, and 3L bottles.
- 2. The price of a bottle is the volume plus four times the wall thickness (in mm).
- 3. The price must be less than 4€.
- 4. If the new machine is broken, we cannot produce 3L bottles, and the wall thickness must be more than 1mm.
- 5. The new machine is broken.
- For all bottle sizes, the wall thickness in millimetre can at most be the volume in liters.

1.
$$v = 1 \lor v = 2 \lor v = 3$$


2.
$$p = v + 2t$$

3.
$$p < 4$$

$$4. \ b \rightarrow (v \neq 3 \land t > 1)$$

$$6. \ \forall z. \, v = z \to t \le z$$

SMT Solving As A Diagram

An Example: Preprocessing

1.
$$v = 1 \lor v = 2 \lor v = 3$$

2.
$$v + 2t < p$$

3.
$$p = 4$$

4.
$$b \to (\neg v = 3 \land t > 1)$$

6.
$$\forall z. v = z \rightarrow t \leq z$$

An Example: Preprocessing

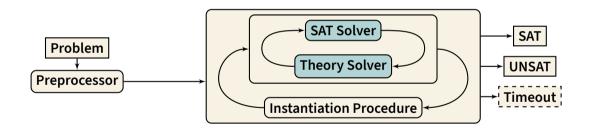
1.
$$v = 1 \lor v = 2 \lor v = 3$$

2.
$$v + 2t < p$$

3.
$$p = 4$$

4.
$$b \to (\neg v = 3 \land t > 1)$$

6.
$$\forall z. v = z \rightarrow t \leq z$$


1.
$$v = 1 \lor v = 2 \lor v = 3$$

2.
$$v + 2t < 4$$

4.
$$\neg b \lor \neg v = 3$$

 $\neg b \lor 1 < t$

$$\textbf{6.} \ \forall z. \, \neg v = z \vee \neg (z < t)$$

SMT Solving As A Diagram

An Example: The Ground Solver

•
$$v = 1 \lor v = 2 \lor v = 3$$

•
$$v + 2t < 4$$

•
$$\neg b \lor \neg v = 3$$

•
$$\neg b \lor 1 < t$$

- b
- $\bullet \ \, \forall z.\, \neg v = z \vee \neg (z < t)$

An Example: The Ground Solver

•
$$v = 1 \lor v = 2 \lor v = 3$$

•
$$v + 2t < 4$$

•
$$\neg b \lor \neg v = 3$$

•
$$\neg b \lor 1 < t$$

- b
- $\bullet \ \, \forall z. \, \neg v = z \vee \neg (z < t)$

SAT Problem

- $\bullet \ p_1 \vee p_2 \vee p_3$
- p₄
- $\bullet \ \, \neg b \vee \neg p_3$
- $\neg b \lor p_5$
- b

An Example: The Ground Solver

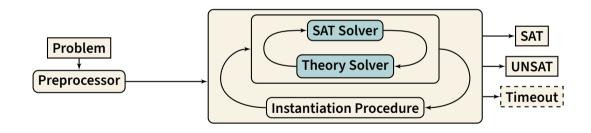
•
$$v = 1 \lor v = 2 \lor v = 3$$

•
$$v + 2t < 4$$

•
$$\neg b \lor \neg v = 3$$

•
$$\neg b \lor 1 < t$$

- b
- $\bullet \ \forall z. \neg v = z \lor \neg (z < t)$


SAT Problem

- $\bullet \ p_1 \vee p_2 \vee p_3$
- p₄
- $\neg b \lor \neg p_3$
- $\neg b \lor p_5$
- b

Theory Literals

- $p_1 := v = 1, p_2 := v = 2, p_3 := v = 3$
- $p_4 := v + 2t < 4$
- $p_5 := t > 1$

SMT Solving As A Diagram

SAT Problem

- $p_1 \vee p_2 \vee p_3$
- p₄
- $\neg b \lor \neg p_3$
- $\bullet \ \neg b \vee p_5$
- b

Theory Literals

- $p_1 := v = 1, p_2 := v = 2, p_3 := v = 3$
- $p_4 := v + 2t < 4$
- $p_5 := t > 1$

SAT Problem

- $\bullet \ p_1 \vee p_2 \vee p_3$
- p₄
- $\neg b \vee \neg p_3$
- $\neg b \lor p_5$
- b

Theory Literals

- $p_1 := v = 1, p_2 := v = 2, p_3 := v = 3$
- $p_4 := v + 2t < 4$
- $p_5 := t > 1$

SAT Solver

I pick b, p_2 , p_4 , and p_5 $\cite{condition}$

SAT Problem

- $\bullet \ p_1 \vee p_2 \vee p_3$
- ullet p_4
- $\neg b \vee \neg p_3$
- $\bullet \ \neg b \vee p_5$
- b

Theory Literals

- $p_1 := v = 1, p_2 := v = 2, p_3 := v = 3$
- $p_4 := v + 2t < 4$
- $p_5 := t > 1$

SAT Solver

I pick b, p_2 , p_4 , and p_5 $\cite{condition}$

Linear Arithmetic Solver

1. I get v = 2, v + 2t < 4, and t > 1

SAT Problem

- $\bullet \ p_1 \vee p_2 \vee p_3$
- ullet p_4
- \bullet $\neg b \lor \neg p_3$
- $\bullet \ \neg b \vee p_5$
- b

Theory Literals

- $p_1 := v = 1, p_2 := v = 2, p_3 := v = 3$
- $p_4 := v + 2t < 4$
- $p_5 := t > 1$

SAT Solver

Linear Arithmetic Solver

- 1. I get v = 2, v + 2t < 4, and t > 1
- 2. Doesn't work:

$$\neg v = 2 \lor \neg (v + 2t < 4) \lor \neg t > 1$$

SAT Problem

- $\bullet \ p_1 \vee p_2 \vee p_3$
- p₄
- \bullet $\neg b \lor \neg p_3$
- $\neg b \lor p_5$
- b

Theory Literals

- $p_1 := v = 1, p_2 := v = 2, p_3 := v = 3$
- $p_4 := v + 2t < 4$
- $p_5 := t > 1$

SAT Solver

Linear Arithmetic Solver

- 1. I get v = 2, v + 2t < 4, and t > 1
- 2. Doesn't work:

$$\neg v = 2 \lor \neg (v + 2t < 4) \lor \neg t > 1$$

SAT Solver

I have to pick b, p_1 , p_4 , and $p_5 ext{ } ext{\'e}$

SAT Problem

- $\bullet \ p_1 \vee p_2 \vee p_3$
- ullet p_4
- $\neg b \lor \neg p_3$
- $\neg b \lor p_5$
- b

Theory Literals

- $p_1 := v = 1, p_2 := v = 2, p_3 := v = 3$
- $p_4 := v + 2t < 4$
- $p_5 := t > 1$

SAT Solver

Linear Arithmetic Solver

- 1. I get v = 2, v + 2t < 4, and t > 1
- 2. Doesn't work: $\neg v = 2 \lor \neg (v + 2t < 4) \lor \neg t > 1$

SAT Solver

I have to pick b, p_1 , p_4 , and $p_5 ext{ } e$

Linear Arithmetic Solver

1. I get v = 1, v + 2t < 4, and t > 1

SAT Problem

- $\bullet \ p_1 \vee p_2 \vee p_3$
- p₄
- $\neg b \lor \neg p_3$
- $\neg b \lor p_5$
- b

Theory Literals

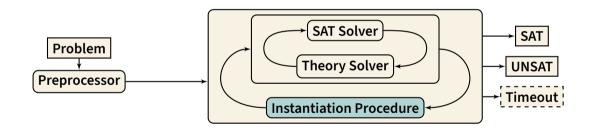
- $p_1 := v = 1, p_2 := v = 2, p_3 := v = 3$
- $p_4 := v + 2t < 4$
- $p_5 := t > 1$

SAT Solver

Linear Arithmetic Solver

- 1. I get v = 2, v + 2t < 4, and t > 1
- 2. Doesn't work:

$$\neg v = 2 \lor \neg (v + 2t < 4) \lor \neg t > 1$$


SAT Solver

I have to pick b, p_1 , p_4 , and $p_5 ext{ } e$

Linear Arithmetic Solver

- 1. I get v = 1, v + 2t < 4, and t > 1
- 2. That works! 🎉

SMT Solving As A Diagram

SAT Problem

- $\bullet \ p_1 \vee p_2 \vee p_3$
- ullet p_4
- $\neg b \lor \neg p_3$
- $\neg b \lor p_5$
- b

Theory Literals

- $\bullet \ p_1:=v=1, p_2:=v=2, p_3:=v=3$
- $p_4 := v + 2t < 4$
- $p_5 := t > 1$

Instantiation Procedure

 $\bullet \ \ \mathsf{I} \ \mathsf{have} \ \forall z. \, \neg v = z \vee \neg z < t$

SAT Problem

- $\bullet \ p_1 \vee p_2 \vee p_3$
- p₄
- $\neg b \lor \neg p_3$
- $\neg b \lor p_5$
- b

Theory Literals

- $\bullet \ p_1:=v=1, p_2:=v=2, p_3:=v=3$
- $p_4 := v + 2t < 4$
- $p_5 := t > 1$

Instantiation Procedure

- I have $\forall z. \neg v = z \lor \neg z < t$
- What happens if I pick $z \leftarrow 1$? $\mathbf{\overline{u}}$

SAT Problem

- $p_1 \vee p_2 \vee p_3$
- ullet p_4
- $\neg b \lor \neg p_3$
- $\neg b \lor p_5$
- b

Theory Literals

- $\bullet \ p_1:=v=1, p_2:=v=2, p_3:=v=3$
- $p_4 := v + 2t < 4$
- $p_5 := t > 1$

Instantiation Procedure

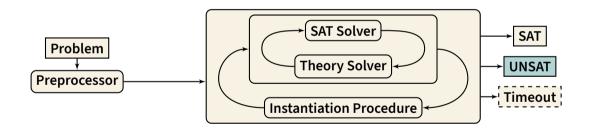
- I have $\forall z. \neg v = z \lor \neg z < t$
- What happens if I pick $z \leftarrow 1$? $\mathbf{\overline{w}}$
- That's $\neg v = 1 \lor \neg t > 1$

SAT Problem

- $p_1 \vee p_2 \vee p_3$
- p₄
- $\neg b \lor \neg p_3$
- $\neg b \lor p_5$
- b

Theory Literals

- $\bullet \ p_1:=v=1, p_2:=v=2, p_3:=v=3$
- $p_4 := v + 2t < 4$
- $p_5 := t > 1$


Instantiation Procedure

- I have $\forall z. \neg v = z \lor \neg z < t$
- What happens if I pick $z \leftarrow 1$?
- That's $\neg v = 1 \lor \neg t > 1$

SAT Solver

- That's $\neg p_1 \lor \neg p_5$
- Oh no (2)

SMT Solving As A Diagram

Part II Using SMT Solvers

Some Solvers You Can Try (a Biased List)

CVC5

- Industrial strength
- Supports everything
- cvc5.github.io

MeriT

- Small solver
- Excellent proofs, good quantifier support
- www.verit-solver.org

- Very established
- Also supports everything
- https:
 //github.com/Z3Prover/z3

- Specialized on bit-vectors, and floating-points
- Very fast
- bitwuzla.github.io

(set-logic LRA)

```
(set-logic LRA)
(declare-const v Real) (declare-const t Real)
(declare-const b Bool)
```

```
(set-logic LRA)
(declare-const v Real) (declare-const t Real)
(declare-const b Bool)
(assert (or (= v 1) (= v 2) (= v 3)))
(assert (< (+ v (* 2 t)) p))
(assert (= p 4))
(assert (=> b (and (not (= v 3)) (> t 1))))
(assert b)
(assert (forall ((z Real)) (=> (= v z) (<= t z))))</pre>
```

```
(set-logic LRA)
(declare-const v Real) (declare-const t Real)
(declare-const b Bool)
(assert (or (= v 1) (= v 2) (= v 3)))
(assert (< (+ v (* 2 t)) p))
(assert (= p 4))
(assert (=> b (and (not (= v 3)) (> t 1))))
(assert b)
(assert (forall ((z Real)) (=> (= v z) (<= t z))))
(check-sat)</pre>
```

SMT-LIB as a Common Language

```
(set-logic LRA)
(declare-const v Real) (declare-const t Real)
(declare-const b Bool)
(assert (or (= v 1) (= v 2) (= v 3)))
(assert (< (+ v (* 2 t)) p))
(assert (= p 4))
(assert (=> b (and (not (= v 3)) (> t 1))))
(assert b)
(assert (forall ((z Real)) (=> (= v z) (<= t z))))
(check-sat)
    Most SMT solvers support SMT-LIB
```

Annual competition (SMT-COMP)

📚 Large benchmark library

What SMT Solvers Can Do

All

- read SMT-LIB
- solve a subset of official theories
 - uninterpreted functions
 - (linear) arithmetic
 - arrays
 - algebraic data-types
 - strings
 - bitvectors
 - floating-point arithmetic
 - quantifiers
- solve some proprietary theories, or extensions
 - bags, sets, higher-order quantifiers, ...

What SMT Solvers Can Do

All

- read SMT-LIB
- solve a subset of official theories
 - uninterpreted functions
 - (linear) arithmetic
 - arrays
 - algebraic data-types
 - strings
 - bitvectors
 - floating-point arithmetic
 - quantifiers
- solve some proprietary theories, or extensions
 - bags, sets, higher-order quantifiers, ...

Most

- give you models
- give you cores
- have some API

Some

- give you proofs
- give you interpolants
- can optimize
- have a high-assurance mode
 - cvc5
- have a tactics language
 - Z3

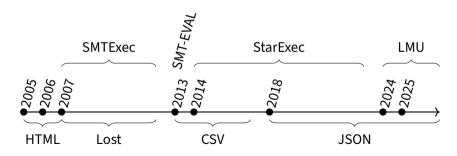
Part III **Evaluating SMT Solvers**

The SMT-LIB Benchmarks

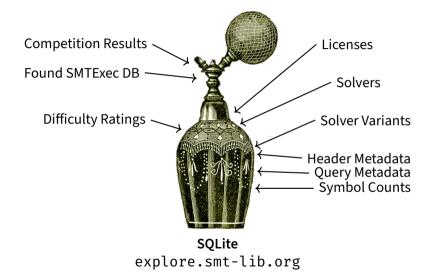
Fun Facts

- 495,177 benchmarks
- 34,614,311 queries
- 287 families

- 2,630,828 queries in one benchmark
- a 1.9GB query
- up to 3,515,188 open parentheses

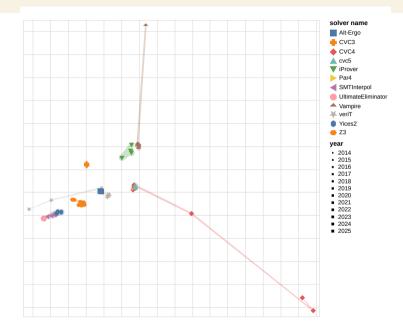

The SMT-LIB Benchmarks

Fun Facts


- 495,177 benchmarks
- 34,614,311 queries
- 287 families

SMT Competitions

- 2,630,828 queries in one benchmark
- a 1.9GB query
- up to 3,515,188 open parentheses


Botteling Everything Up

The SMT-LIB Benchmarks Over Time

Isomap: UF

What Happened in 2016?

Conflicting Instances! (Reynolds et al. 2016, Barbosa et al. 2017)

Idea

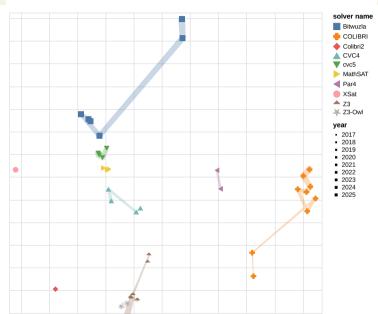
- 1. Given: ground model M
- 2. F := t = u or $F := t \neq u$ with variables V
- 3. Find ground substitution σ on Vs.t.
- 4. $M \wedge F \sigma \vDash_{EUF} \bot$
- + Like a theory lemma!
- + Generalization of E-matching.
- Often fails.

Example

- **1.** Model: $a = b, g(a) \neq f(b)$
- 2. and $\forall x. g(x) = f(x)$

What Happened in 2016?

Conflicting Instances! (Reynolds et al. 2016, Barbosa et al. 2017)


Idea

- 1. Given: ground model M
- 2. F := t = u or $F := t \neq u$ with variables V
- 3. Find ground substitution σ on Vs.t.
- 4. $M \wedge F \sigma \vDash_{EUF} \bot$
- + Like a theory lemma!
- + Generalization of E-matching.
- Often fails.

Example

- **1.** Model: a = b, $g(a) \neq f(b)$
- 2. and $\forall x. g(x) = f(x)$
- 3. $\sigma = \{x \leftarrow a\}$
- 4. gives us: g(a) = f(a)

Isomap: QF_FP

Thank You!

Questions? Benchmarks?

