
System ϒ — Solid Foundations for SMT Proofs

Hans-Jörg Schurr, J. Garrett Morris, Christa Jenkins
Andrew Reynolds, Cesare Tinelli

EuroProofNet — WG2 Closing Workshop
Institut Pascal, Orsay, France (remote)
September 11, 2025

SMT Proofs: Everyone for Themselves?

• SMT proofs are in use!
• cvc5 in Isabelle
• veriT in Isabelle
• Internal proof checkers
• External proof checkers
• Translation to Dedukti

• However!
• This is done for each solver
individually!

• There is no hope for an SMT DRAT.

Alethe

+ Looks like SMT-LIB
+ Used! (cvc5, veriT, Isabelle, Carcara)
+ Well documented...
- ... in English
- Generality is questionable

LFSC

+ High performance checker
+ Declarative
- Hard to read
- Side conditions from another world
- Limited theories

2

SMT Proofs: Everyone for Themselves?

• SMT proofs are in use!
• cvc5 in Isabelle
• veriT in Isabelle
• Internal proof checkers
• External proof checkers
• Translation to Dedukti

• However!
• This is done for each solver
individually!

• There is no hope for an SMT DRAT.

Alethe

+ Looks like SMT-LIB
+ Used! (cvc5, veriT, Isabelle, Carcara)
+ Well documented...
- ... in English
- Generality is questionable

LFSC

+ High performance checker
+ Declarative
- Hard to read
- Side conditions from another world
- Limited theories

2

SMT Proofs: Everyone for Themselves?

• SMT proofs are in use!
• cvc5 in Isabelle
• veriT in Isabelle
• Internal proof checkers
• External proof checkers
• Translation to Dedukti

• However!
• This is done for each solver
individually!

• There is no hope for an SMT DRAT.

Alethe

+ Looks like SMT-LIB
+ Used! (cvc5, veriT, Isabelle, Carcara)
+ Well documented...
- ... in English
- Generality is questionable

LFSC

+ High performance checker
+ Declarative
- Hard to read
- Side conditions from another world
- Limited theories

2

SMT Proofs: Everyone for Themselves?

• SMT proofs are in use!
• cvc5 in Isabelle
• veriT in Isabelle
• Internal proof checkers
• External proof checkers
• Translation to Dedukti

• However!
• This is done for each solver
individually!

• There is no hope for an SMT DRAT.

Alethe

+ Looks like SMT-LIB
+ Used! (cvc5, veriT, Isabelle, Carcara)
+ Well documented...
- ... in English
- Generality is questionable

LFSC

+ High performance checker
+ Declarative
- Hard to read
- Side conditions from another world
- Limited theories 2

Eunoia: Inspired by Alethe and LFSC

Goal 1
Look like SMT-LIB and Alethe.

Goal 2
Provide a declarative language to specify proof rules for all SMT-LIB logics.
(that includes Bit Vectors).

Goal 3
Allow fast checking of proofs against specified rules.

Non Goal
Rules can be specified freely. It is not necessary to prove them correct.
Not Curry-Howard correspondence based.

By SMT people for SMT people!

3

Eunoia: Inspired by Alethe and LFSC

Goal 1
Look like SMT-LIB and Alethe.

Goal 2
Provide a declarative language to specify proof rules for all SMT-LIB logics.
(that includes Bit Vectors).

Goal 3
Allow fast checking of proofs against specified rules.

Non Goal
Rules can be specified freely. It is not necessary to prove them correct.
Not Curry-Howard correspondence based.

By SMT people for SMT people!

3

Eunoia: Inspired by Alethe and LFSC

Goal 1
Look like SMT-LIB and Alethe.

Goal 2
Provide a declarative language to specify proof rules for all SMT-LIB logics.
(that includes Bit Vectors).

Goal 3
Allow fast checking of proofs against specified rules.

Non Goal
Rules can be specified freely. It is not necessary to prove them correct.
Not Curry-Howard correspondence based.

By SMT people for SMT people!

3

Eunoia: Inspired by Alethe and LFSC

Goal 1
Look like SMT-LIB and Alethe.

Goal 2
Provide a declarative language to specify proof rules for all SMT-LIB logics.
(that includes Bit Vectors).

Goal 3
Allow fast checking of proofs against specified rules.

Non Goal
Rules can be specified freely. It is not necessary to prove them correct.
Not Curry-Howard correspondence based.

By SMT people for SMT people!

3

Eunoia: Example 1

(assume a1 (and true (= a b))
(assume a2 (= b c))
(step s1 (= a b) :rule andE :premises (a1) :args (2))
(step s2 (= a c) :rule trans :premises (s1 a2))
(step s3 (= (f a) (f c)) :rule cong :premises (s2) :args (f))

4

Eunoia: Example 1 (Under The Hood)

Γ ⊢ (cong f (trans
(andE 2 (assume (⊤ ∧ (a = b)))

(assume (a = b))))) ∶ Proof (f a = f b)

5

Eunoia: Example 1 (The Rules)

(declare-rule trans ((T Type) (a T) (b T) (c T))
:premises ((= a b) (= b c))
:conclusion (= a c)

)
(declare-rule cong ((T Type) (S Type) (a T) (b T) (f (-> S T)))

:premises ((= a b))
:args (f)
:conclusion (= (f a) (f c))

)

6

Eunoia: Example 1 (The Rules)

(program select ((a Bool) (b Bool) (i Int))
:signature (Int Bool) Bool
(

((select 1 (and a b)) a)
((select 2 (and a b)) b)

)
)
(declare-rule andE ((a Bool) (b Bool) (i Int))

:premises ((and a b))
:args (i)
:conclusion (select i (and a b))

)

7

Eunoia: Example 1 (The Rules, Abstractly)

Γ ⊢ trans ∶ Proof a = b→ Proof b = c→ Proof a = c
Γ ⊢ cong ∶ (f ∶ T → S) → Proof a = b→ Proof (f a) = (f b)
Γ ⊢ andE ∶ (i ∶ Int) → Proof a ∧ b→ Proof (select i (a ∧ b)

8

Eunoia: Example 2 (Recursion)

(program selectLast ((a Bool) (b Bool))
:signature (Bool) Bool
(

((selectLast (and a b)) (selectLast b))
((selectLast a) a)

)
)
(declare-rule andLast ((a Bool))

:premises (a)
:conclusion (selectLast a)

)

9

So what do we have?

Eunoia is
• a dependently typed programming language,
• that mixes data and computation freely,
• that allows divergent computations.
• Computations can throw exceptions

• that can be cached!
• i.e., we have observable effects.

• More features I will discuss.
• Some features I will not discuss.

Oh, my...
how does that all work?

Let’s look at Ethos!
Oh, my...
how does that all work?

Let’s look at Ethos!

J. Garrett Morris solving a problem.

10

So what do we have?

Eunoia is
• a dependently typed programming language,
• that mixes data and computation freely,
• that allows divergent computations.
• Computations can throw exceptions

• that can be cached!
• i.e., we have observable effects.

• More features I will discuss.
• Some features I will not discuss.

Oh, my...
how does that all work?

Let’s look at Ethos!

Oh, my...
how does that all work?

Let’s look at Ethos!

J. Garrett Morris solving a problem.

10

Ethos: a Proof Checker, Not a Type Checker

Ethos checking model (roughly):
1. Check only that (constants, programs, rules)
signature is well-formed.

2. Iterate over proof steps.
- Observe that all terms have concrete type!
2.1 Instantiate variables in types.
2.2 Recurse into type constraints.
2.3 Perform computations.

• Divergence, exception: proof reject.

Upsides
• Correct!
• Fast.
• Easy to implement.
• Easy to extend.

Downsides

• Bugs in rules can be missed.
• Unexpected.
• Wasted work (e.g., function
composition).

• Breaks Goal 2 11

Ethos: Goal 2 Problem

Goal 2
Provide a declarative language to specify proof rules for all SMT-LIB logics.

; bvsub, bvadd : BitVec n -> BitVec n -> BitVec n
(declare-rule bv-sub-eliminate
((n Int) (m Int) (x (BitVec n)) (y (BitVec m)))
:args (x y)
:conclusion (= (bvsub x y) (bvadd x (bvneg y)))

)

I claim: not well typed. Not a soundness issue: Ethos accepts only valid uses.

However, Ethos cannot detect that this is a bad specification.

12

So what do we have?

Eunoia is
• a dependently typed programming language,
• that mixes data and computation freely,
• that allows divergent computations.
• Computations can throw exceptions

• that can be cached!
• i.e., we have observable effects.

• More features I will discuss.
• Some features I will not discuss.

Oh, my...
how does that all work?

Let’s look at Ethos!

Oh, my...
how does that all work?

Let’s look at Ethos!

J. Garrett Morris solving a problem.

13

So what do we have?

Eunoia is
• a dependently typed programming language,
• that mixes data and computation freely,
• that allows divergent computations.
• Computations can throw exceptions

• that can be cached!
• i.e., we have observable effects.

• More features I will discuss.
• Some features I will not discuss.

Oh, my...
how does that all work?

Let’s look at Ethos!
Oh, my...
how does that all work?

Let’s look at Ethos!

J. Garrett Morris solving a problem. 13

μEunoia : System ϒ + Core Eunoia

System ϒ: Decidable Dependent Type Theory with explicit evaluation evidence.

μEunoia is not a subset of Eunoia.

μEunoia checking model (abstractly):

1. Write your signature in μEunoia (auto translation is future work).
2. Typecheck your signature.
3. Run modified Ethos on an Eunoia proof.

• Divergence, exceptions: reject proof
• Otherwise: output proof with evaluation evidence (μEunoia proof)

4. Typecheck your μEunoia proof.

14

Rule Sketches (I am sorry for this slide.)

Γ ⊢ M ∶ A
Γ ⊢c M ∶ A

Γ ⊢ A ∶ 𝒯
Γ ⊢ ℳA ∶ 𝒯

Γ ⊢ M ∶ A
return M ∶ ℳA

Γ ⊢ A ∶ 𝒯 Γ,A ⊢c M ∶ B
Γ ⊢ λ M ∶ Π A B

Γ ⊢ A ∶ 𝒯 Γ,A ⊢c B ∶ 𝒯
Γ ⊢ Π A B ∶ 𝒯

Γ ⊢ V ∶ A Γ ⊢c M ∶ ℳA
Γ ⊢ V ← M ∶ 𝒯

Γ ⊢c M ∶ ℳA Γ ⊢ M↠ [n] return V
Γ ⊢ ⟨n⟩ ∶ V ← M

Γ ⊢ M ∶ nlet A B Γ ⊢ N ∶ C ← A
Γ ⊢ [M] N ∶ B [C]

Γ ⊢c M ∶ nlet A B Γ ⊢ N ∶ C ← A
Γ ⊢c [M] N ∶ B [C]

Γ ⊢c M ∶ ℳA Γ ⊢c B ∶ 𝒯 Γ,A ⊢c N ∶ wk B
Γ ⊢c nlet M N ∶ B

Γ ⊢c M ∶ ℳA Γ,A ⊢c B ∶ 𝒯 Γ,A ⊢c N ∶ B
Γ ⊢c dlet M N ∶ nlet M B

15

Example (Slightly Different Syntax)

zeros ∶ Π(n ∶ ℤ). Vec Intn

moreZeroes ∶ (n ∶ ℤ) → (m ∶ ℤ) → letp = addℤℤℤnm ⟨1⟩ in Vecℤp
moreZeroes n m = dletp = addℤℤℤnm ⟨1⟩ in zerosp

theZeros ∶ Vec ℤ 12
theZeros = [moreZeros 9 3] ⟨4⟩

16

μEunoia

The Project

• Goal: add enough to be “Eunoia”
• Deep Embedding in Agda!
• Substantial: > 11 000 lines

What We Support

• Signatures
• Literals
• Overriding literal typing
• Non-linear matching
• Builtins
• Exceptions
• Special variable scoping

• Declaration-wide scopes
• “Quote” Arrow

Status

100% Language, Evaluation, Typing
100% Unicity
100% Decidability
100% Progress
75% Preservation
10% Soundness Case Study

17

Eunoia Variables: Declaration-Scoped

(declare-parameterized-const ubv_to_int
((m Int :implicit))

(-> (BitVec m) Int))
(program fromBvAdd ((n Int) (bv (BitVec n)))
:signature (Int (BitVec n)) Int
(((fromInt n bv) (+ n (ubv_to_int bv)))

)

“Quote” Arrow

ex ∶ [n +m ∶ ℤ]→ BitVec n
ex (1 + 2) ∶ BitVec 1

• Every declaration has n variables.
• Vec Bool n to mark assigned, free, bound variables
• Vec Term n for typing, substitution.

• Kills De Bruijn indices
• Matching with vectors that track free/bound variables
• Spine-local type inference to assign types in applications.
• Big problem: dlet leaks variables to outer context!

• Solution: Program calls must transfer variables into the caller context.

18

Eunoia Variables: Declaration-Scoped

(declare-parameterized-const ubv_to_int
((m Int :implicit))

(-> (BitVec m) Int))
(program fromBvAdd ((n Int) (bv (BitVec n)))
:signature (Int (BitVec n)) Int
(((fromInt n bv) (+ n (ubv_to_int bv)))

)

“Quote” Arrow

ex ∶ [n +m ∶ ℤ]→ BitVec n
ex (1 + 2) ∶ BitVec 1

• Every declaration has n variables.
• Vec Bool n to mark assigned, free, bound variables
• Vec Term n for typing, substitution.

• Kills De Bruijn indices

• Matching with vectors that track free/bound variables
• Spine-local type inference to assign types in applications.
• Big problem: dlet leaks variables to outer context!

• Solution: Program calls must transfer variables into the caller context.

18

Eunoia Variables: Declaration-Scoped

(declare-parameterized-const ubv_to_int
((m Int :implicit))

(-> (BitVec m) Int))
(program fromBvAdd ((n Int) (bv (BitVec n)))
:signature (Int (BitVec n)) Int
(((fromInt n bv) (+ n (ubv_to_int bv)))

)

“Quote” Arrow

ex ∶ [n +m ∶ ℤ]→ BitVec n
ex (1 + 2) ∶ BitVec 1

• Every declaration has n variables.
• Vec Bool n to mark assigned, free, bound variables
• Vec Term n for typing, substitution.

• Kills De Bruijn indices
• Matching with vectors that track free/bound variables
• Spine-local type inference to assign types in applications.

• Big problem: dlet leaks variables to outer context!
• Solution: Program calls must transfer variables into the caller context.

18

Eunoia Variables: Declaration-Scoped

(declare-parameterized-const ubv_to_int
((m Int :implicit))

(-> (BitVec m) Int))
(program fromBvAdd ((n Int) (bv (BitVec n)))
:signature (Int (BitVec n)) Int
(((fromInt n bv) (+ n (ubv_to_int bv)))

)

“Quote” Arrow

ex ∶ [n +m ∶ ℤ]→ BitVec n
ex (1 + 2) ∶ BitVec 1

• Every declaration has n variables.
• Vec Bool n to mark assigned, free, bound variables
• Vec Term n for typing, substitution.

• Kills De Bruijn indices
• Matching with vectors that track free/bound variables
• Spine-local type inference to assign types in applications.
• Big problem: dlet leaks variables to outer context!

• Solution: Program calls must transfer variables into the caller context.
18

μEunoia

The Project

• Goal: add enough to be “Eunoia”
• Deep Embedding in Agda!
• Substantial: > 11 000 lines

What We Support

• Signatures
• Literals
• Overriding literal typing
• Non-linear matching
• Builtins
• Exceptions
• Special variable scoping

• Declaration-wide scopes
• “Quote” Arrow

Status

100% Language, Evaluation, Typing
100% Unicity
100% Decidability
100% Progress
75% Preservation
10% Soundness Case Study

19

Thank You!

	This is a part header!

