
Eunoia: A Framework for SMT Proof Calculi

Hans-Jörg Schurr
The University of Iowa, USA
Independent
KU Leuven, Belgium

Algo Seminar, GRYEC, Université de Caen Normandie
January 20, 2026

A Satisfiability Modulo Theories Solver

SAT Solver Linear Arithmetic

Arrays

Uninterpreted Functions

Bitvectors

Strings
Mo
de
l

Le
mm
a

SAT

UNSAT

Timeout

Problem
f (x) > 3∧
¬(x ≠ 2 ∗ y ∨
f (y) > 1)

2

Application: AWS Zelkova

Cloud Security Policy
”only admins have access”

Query
”want access; not admin”

P: vaccess ⇒ vadmin

Q: vaccess ∧ ¬vadmin Q ∧ ¬P

SMT Solver

UN
SA
T

SA
T

Ti
m
eo
ut

3

Application: AWS Zelkova

How can we trust the decision?

Testing

• SMT solvers are complex.
• Why are we doing formal methods at all?

Verify SMT Solver

• SMT solvers are complex.
• Might not reach acceptable performance.

Proof Certificates

• Can be independently
checked.

• Proof checkers are smaller.
• Removes the SMT solver
from the critical path.

• Only needed for UNSAT.
• One checker per solver.

4

Application: AWS Zelkova

How can we trust the decision?

Testing

• SMT solvers are complex.
• Why are we doing formal methods at all?

Verify SMT Solver

• SMT solvers are complex.
• Might not reach acceptable performance.

Proof Certificates

• Can be independently
checked.

• Proof checkers are smaller.
• Removes the SMT solver
from the critical path.

• Only needed for UNSAT.
• One checker per solver.

4

Application: AWS Zelkova

Cloud Security Policy
”only admins have access”

Query
”want access; not admin”

P: vaccess ⇒ vadmin

Q: vaccess ∧ ¬vadmin Q ∧ ¬P

SMT Solver

UN
SA
T

SA
T

Ti
m
eo
ut

ProofProof Checker
valid

invalid

5

Application: Verification With Isabelle/HOL

Critical Software &
Specification

Verification Condition
................
................
apply
................
................

Trusted Core

Critical Software &
Specification

Verification Condition

SMT Solver

Timeout UNSAT

Trusted Core

6

Application: Verification With Isabelle/HOL

Critical Software &
Specification

Verification Condition
................
................
apply
................
................

Trusted Core

Critical Software &
Specification

Verification Condition

SMT Solver

Timeout UNSAT

Trusted Core 6

Application: Verification With Isabelle/HOL

Critical Software &
Specification

Verification Condition

SMT Solver

Timeout UNSAT

Proof

Reconstruction

Trusted Core

• Originally for Z3
• Then for veriT
and cvc5

• Very labor intensive to build!
• Performance is critical.

7

What Goes Into a Proof

Theory Solvers
SAT Solver

Preprocessor

CNF CNF

Input F

Rewriter

CNF

SAT

Preprocessing

Rewriting

T-LemmasT-Lemmas

Combination

8

Two Proof Formats

Alethe
A general proof format.

+ Looks like SMT-LIB
+ Used! (cvc5, veriT, Isabelle, Carcara)
+ Well documented...
- ... in English
- Challenges with generality

LFSC
A logical framework (with side
conditions).

+ High performance checker
+ Declarative
- Hard to read
- Side conditions from another world
- Limited theories

9

Two Proof Formats

Alethe
A general proof format.

+ Looks like SMT-LIB
+ Used! (cvc5, veriT, Isabelle, Carcara)
+ Well documented...
- ... in English
- Challenges with generality

LFSC
A logical framework (with side
conditions).

+ High performance checker
+ Declarative
- Hard to read
- Side conditions from another world
- Limited theories

9

Eunoia: Inspired by Alethe and LFSC

Goal 1
Look like SMT-LIB and Alethe.

Goal 2
Provide a declarative language to specify proof rules for all SMT-LIB logics.
(that includes Bit Vectors).

Goal 3
Allow fast checking of proofs against specified rules.

Non Goal
Rules can be specified freely. It is not necessary to prove them correct.
Not Curry-Howard correspondence based.

By SMT people for SMT people!

10

Eunoia: Inspired by Alethe and LFSC

Goal 1
Look like SMT-LIB and Alethe.

Goal 2
Provide a declarative language to specify proof rules for all SMT-LIB logics.
(that includes Bit Vectors).

Goal 3
Allow fast checking of proofs against specified rules.

Non Goal
Rules can be specified freely. It is not necessary to prove them correct.
Not Curry-Howard correspondence based.

By SMT people for SMT people!

10

Eunoia: Inspired by Alethe and LFSC

Goal 1
Look like SMT-LIB and Alethe.

Goal 2
Provide a declarative language to specify proof rules for all SMT-LIB logics.
(that includes Bit Vectors).

Goal 3
Allow fast checking of proofs against specified rules.

Non Goal
Rules can be specified freely. It is not necessary to prove them correct.
Not Curry-Howard correspondence based.

By SMT people for SMT people!

10

Eunoia: Inspired by Alethe and LFSC

Goal 1
Look like SMT-LIB and Alethe.

Goal 2
Provide a declarative language to specify proof rules for all SMT-LIB logics.
(that includes Bit Vectors).

Goal 3
Allow fast checking of proofs against specified rules.

Non Goal
Rules can be specified freely. It is not necessary to prove them correct.
Not Curry-Howard correspondence based.

By SMT people for SMT people!

10

Eunoia: Example 1

(assume a1 (and true (= a b))
(assume a2 (= b c))
(step s1 (= a b) :rule andE :premises (a1) :args (2))
(step s2 (= a c) :rule trans :premises (s1 a2))
(step s3 (= (f a) (f c)) :rule cong :premises (s2) :args (f))

11

Eunoia: Example 1 (Under The Hood)

Γ ⊢ (cong f (trans
(andE 2 (assume (⊤ ∧ (a = b)))

(assume (a = b))))) ∶ Proof (f a = f b)

12

Eunoia: Example 1 (The Rules)

(declare-rule trans ((T Type) (a T) (b T) (c T))
:premises ((= a b) (= b c))
:conclusion (= a c)

)
(declare-rule cong ((T Type) (S Type) (a T) (b T) (f (-> S T)))

:premises ((= a b))
:args (f)
:conclusion (= (f a) (f c))

)

13

Eunoia: Example 1 (The Rules)

(program select ((a Bool) (b Bool) (i Int))
:signature (Int Bool) Bool
(

((select 1 (and a b)) a)
((select 2 (and a b)) b)

)
)
(declare-rule andE ((a Bool) (b Bool) (i Int))

:premises ((and a b))
:args (i)
:conclusion (select i (and a b))

)

14

Eunoia: Example 1 (The Rules, Abstractly)

Γ ⊢ trans ∶ Proof a = b→ Proof b = c→ Proof a = c
Γ ⊢ cong ∶ (f ∶ T → S) → Proof a = b→ Proof (f a) = (f b)
Γ ⊢ andE ∶ (i ∶ Int) → Proof a ∧ b→ Proof (select i (a ∧ b)

15

Eunoia: Example 2 (Recursion)

(program selectLast ((a Bool) (b Bool))
:signature (Bool) Bool
(

((selectLast (and a b)) (selectLast b))
((selectLast a) a)

)
)
(declare-rule andLast ((a Bool))

:premises (a)
:conclusion (selectLast a)

)

16

Where do rules come from?

Cooperating Proof Calculus

• cvc5 specific
• for all standard theories
• 100% proof coverage in safe mode
• faster than old LFSC system

Alethe in Eunoia

• models the Alethe calculus
• with Eunoia syntax
• working proof of concept

17

Where do rules come from?

Cooperating Proof Calculus

• cvc5 specific
• for all standard theories
• 100% proof coverage in safe mode
• faster than old LFSC system

Alethe in Eunoia

• models the Alethe calculus
• with Eunoia syntax
• working proof of concept

17

The cvc5 Ecosystem

SAT Solver

Rewriter

Theory Solver

Proof Nodes Elaborated Proofs

API

Alethe Printer

Eunoia Printer

Isabelle/HOL

Carcara

Ethos
Lean

Eunoia Language CPC

RARE

Part of

writen in

used by

cvc5

System Y

18

Checking Eunoia Proofs

Eunoia is
• a dependently typed programming language,
• that mixes data and computation freely,
• that allows divergent computations.
• Computations can throw exceptions

• that can be cached!
• i.e., we have observable effects.

19

Checking Eunoia Proofs

Eunoia is
• a dependently typed programming language,
• that mixes data and computation freely,
• that allows divergent computations.
• Computations can throw exceptions

• that can be cached!
• i.e., we have observable effects.

Oh, my...
how does that all work?

Let’s look at Ethos!

19

Ethos: a Proof Checker, Not a Type Checker

Ethos checking model (roughly):
1. Check only that (constants, programs, rules)
signature is well-formed.

2. Iterate over proof steps.
- Observe that all terms have concrete type!
2.1 Instantiate variables in types.
2.2 Recurse into type constraints.
2.3 Perform computations.

• Divergence, exception: proof reject.

Upsides
• Correct!
• Fast.
• Easy to implement.
• Easy to extend.

Downsides

• Bugs in rules can be missed.
• Unexpected.
• Wasted work (e.g., function
composition).

20

Checking Eunoia Proofs

Eunoia is
• a dependently typed programming language,
• that mixes data and computation freely,
• that allows divergent computations.
• Computations can throw exceptions

• that can be cached!
• i.e., we have observable effects.

Oh, my...
how does that all work?

Let’s look at Ethos!

21

Checking Eunoia Proofs

Eunoia is
• a dependently typed programming language,
• that mixes data and computation freely,
• that allows divergent computations.
• Computations can throw exceptions

• that can be cached!
• i.e., we have observable effects.

J. Garrett Morris solving a problem. 21

μEunoia : System ϒ + Core Eunoia

System ϒ: Decidable Dependent Type Theory with explicit evaluation evidence.

μEunoia is not a subset of Eunoia.

μEunoia checking model (abstractly):

1. Write your signature in μEunoia (auto translation is future work).
2. Typecheck your signature.
3. Run modified Ethos on an Eunoia proof.

• Divergence, exceptions: reject proof
• Otherwise: output proof with evaluation evidence (μEunoia proof)

4. Typecheck your μEunoia proof.

22

Example

zeros ∶ Π(n ∶ ℤ). Vec Intn

moreZeroes ∶ (n ∶ ℤ) → (m ∶ ℤ) → letp = addnm ⟨1⟩ in Vecℤp
moreZeroes n m = dletp = addnm ⟨1⟩ in zerosp

theZeros ∶ Vec ℤ 12
theZeros = [moreZeros 9 3] ⟨4⟩

23

Example

zeros ∶ Π(n ∶ ℤ). Vec Intn

moreZeroes ∶ (n ∶ ℤ) → (m ∶ ℤ) → letp = addnm ⟨1⟩ in Vecℤp
moreZeroes n m = dletp = addnm ⟨1⟩ in zerosp

theZeros ∶ Vec ℤ 12
theZeros = [moreZeros 9 3] ⟨4⟩

23

Example

zeros ∶ Π(n ∶ ℤ). Vec Intn

moreZeroes ∶ (n ∶ ℤ) → (m ∶ ℤ) → letp = addnm ⟨1⟩ in Vecℤp
moreZeroes n m = dletp = addnm ⟨1⟩ in zerosp

theZeros ∶ Vec ℤ 12
theZeros = [moreZeros 9 3] ⟨4⟩

23

μEunoia

The Project

• Goal: add enough to be “Eunoia”
• Deep Embedding in Agda!
• Substantial: > 11 000 lines

What We Support

• Signatures
• Literals
• Overriding literal typing
• Non-linear matching
• Builtins
• Exceptions
• Special variable scoping

• Declaration-wide scopes
• “Quote” Arrow

Status

100% Language, Evaluation, Typing
100% Unicity
100% Decidability
100% Progress
75% Preservation
10% Soundness Case Study

24

μEunoia

The Project

• Goal: add enough to be “Eunoia”
• Deep Embedding in Agda!
• Substantial: > 11 000 lines

What We Support

• Signatures
• Literals
• Overriding literal typing
• Non-linear matching
• Builtins
• Exceptions
• Special variable scoping

• Declaration-wide scopes
• “Quote” Arrow

Status

100% Language, Evaluation, Typing
100% Unicity
100% Decidability
100% Progress
75% Preservation
10% Soundness Case Study

24

The State of Eunoia

Ethos Proof Checker
Experimentally deployed at AWS.
System description in progress (IJCAR).

CPC Rules
Stable and well tested.
Research paper in progress (CAV).

AletheInEunoia
Working prototype.
Alethe update paper in progress (IJCAR).

System ϒ and μEunoia
Finishing touches needed.

Downsides

• Does not give guarantees for the
soundness of rules.

• i.e., it’s trivial to define
false ∶ Proof ⊥.

• Ethos is not verified.
• Does not simpify proof
reconstruction.

25

The State of Eunoia

Ethos Proof Checker
Experimentally deployed at AWS.
System description in progress (IJCAR).

CPC Rules
Stable and well tested.
Research paper in progress (CAV).

AletheInEunoia
Working prototype.
Alethe update paper in progress (IJCAR).

System ϒ and μEunoia
Finishing touches needed.

Downsides

• Does not give guarantees for the
soundness of rules.

• i.e., it’s trivial to define
false ∶ Proof ⊥.

• Ethos is not verified.
• Does not simpify proof
reconstruction.

25

The Future: Panproof

Elaborate solver specific rules into common standard rules on demand.

data ProofRule (@0 Γ : Signature) : Set where
Rule :

(name : String)
→ (infer : (prems : List (Sequent Γ)) → Maybe (Sequent Γ)))
→ (elaborate : (prems : List (Sequent Γ)) → Maybe (Step Γ prems))
→ (@0 proof : (prems : List (Sequent Γ))

→ (infer prems) == (checkStep (elaborate prems)))

→ ProofRule Γ

Prototype:
https://github.com/hansjoergschurr/Panproof

26

https://github.com/hansjoergschurr/Panproof

Thank You!

Panproof: Rule Example

C1 � � � Cn+1
Rv

Cf

����� �����

C1	
	
	

C0

1
� � �

Cn+1	
	
	

C0

n+1 Rc

p1; L1; : : : ; pn; Ln�Cf

C0

1
C0

2
Rb
p1; L1�

Co1 C0

3 Rb

1; L2�Co2	
	
	 C0

n+1 Rb

pn; Ln�Cf

Co1
����
��

L1 _M1

C0

3
����
��

:L2 _M2
Rp
1; L2�

M1 _M2

���� ����� ������ ���������� �����

28

Eunoia Variables: Declaration-Scoped

(declare-parameterized-const ubv_to_int
((m Int :implicit))

(-> (BitVec m) Int))
(program fromBvAdd ((n Int) (bv (BitVec n)))
:signature (Int (BitVec n)) Int
(((fromInt n bv) (+ n (ubv_to_int bv)))

)

“Quote” Arrow

ex ∶ [n +m ∶ ℤ]→ BitVec n
ex (1 + 2) ∶ BitVec 1

• Every declaration has n variables.
• Vec Bool n to mark assigned, free, bound variables
• Vec Term n for typing, substitution.

• Kills De Bruijn indices
• Matching with vectors that track free/bound variables
• Spine-local type inference to assign types in applications.
• Big problem: dlet leaks variables to outer context!

• Solution: Program calls must transfer variables into the caller context.
29

Rule Sketches

Γ ⊢ M ∶ A
Γ ⊢c M ∶ A

Γ ⊢ A ∶ 𝒯
Γ ⊢ ℳA ∶ 𝒯

Γ ⊢ M ∶ A
return M ∶ ℳA

Γ ⊢ A ∶ 𝒯 Γ,A ⊢c M ∶ B
Γ ⊢ λ M ∶ Π A B

Γ ⊢ A ∶ 𝒯 Γ,A ⊢c B ∶ 𝒯
Γ ⊢ Π A B ∶ 𝒯

Γ ⊢ V ∶ A Γ ⊢c M ∶ ℳA
Γ ⊢ V ← M ∶ 𝒯

Γ ⊢c M ∶ ℳA Γ ⊢ M↠ [n] return V
Γ ⊢ ⟨n⟩ ∶ V ← M

Γ ⊢ M ∶ nlet A B Γ ⊢ N ∶ C ← A
Γ ⊢ [M] N ∶ B [C]

Γ ⊢c M ∶ nlet A B Γ ⊢ N ∶ C ← A
Γ ⊢c [M] N ∶ B [C]

Γ ⊢c M ∶ ℳA Γ ⊢c B ∶ 𝒯 Γ,A ⊢c N ∶ wk B
Γ ⊢c nlet M N ∶ B

Γ ⊢c M ∶ ℳA Γ,A ⊢c B ∶ 𝒯 Γ,A ⊢c N ∶ B
Γ ⊢c dlet M N ∶ nlet M B

30

	This is a part header!

