Eunoia: A Framework for SMT Proof Calculi

Hans-Jorg Schurr

The University of lowa, USA
. Independent

KU Leuven, Belgium

Algo Seminar, GRYEC, Université de Caen Normandie
January 20, 2026

A Satisfiability Modulo Theories Solver

Uninterpreted Functions

o

A
Problem e
X)>3A
T2y | EarsadE—
fv) > ——[SAT]

[Bitvectors

]
)
Linear Arithmetic]
)
]

Strings

Application: AWS Zelkova

Cloud Security Policy
"only admins have access”

{P: Vaccess = Yadmin

N

(Query (
o 8\ /\ =V. 1 /\ —|P
"want access; not admin” (@ Vaccess adm'”] @

MT S

r

w
-
<
(1)
=

|UNSAT|
SAT

O < Timeout

<
0

Application: AWS Zelkova

How can we trust the decision?
Testing

« SMT solvers are complex.

« Why are we doing formal methods at all?

Verify SMT Solver
« SMT solvers are complex.

+ Might not reach acceptable performance.

Application: AWS Zelkova

How can we trust the decision?

Proof Certificates
Testing - Can be independently
« SMT solvers are complex. checked.
« Why are we doing formal methods at all? Proof checkers are smaller.
. » Removes the SMT solver
Verify SMT Solver

from the critical path.
» Only needed for UNSAT.
« One checker per solver. &

« SMT solvers are complex.

+ Might not reach acceptable performance.

Application: AWS Zelkova

Cloud Security Policy
"only admins have access”

{P: Vaccess = Yadmin

N

(Query

(Q‘ V. A~]—»
0 . V i QAP
"want access; not admin” (= "access admin C:]

J

SMT Solver

] Ll
/[Proof Checker] Proof | 5, E qéi

= 2| T
-

e e

Application: Verification With Isabelle/HOL

Critical Software &
Specification

(Verification Condition |

9

[Trusted Core] :

Application: Verification With Isabelle/HOL

Critical Software &
Specification

(Verification Condition |

9

[Trusted Core]

Critical Software &
Specification

[Veriﬁcation Condition]
{
[SMT Solver]
S

?

[Trusted Core]

Application: Verification With Isabelle/HOL

Critical Software &

Specification
[Veriﬁcation ConditionJ + Originally for Z3
! + Then for veriT
[SMT Solver
7\ and cvc5

{ Timeout ; | UNSAT « Very labor intensive to build!
« Performance is critical.

(Reconstruction

i
[Trusted Core] ;

What Goes Into a Proof

SAT Solver
Theory Solvers 3
Rewriting

Preprpcessing

Combihation

CNF CNF
SAT

Two Proof Formats

Alethe
A general proof format.

+

Looks like SMT-LIB

Used! (cvc5, veriT, Isabelle, Carcara)
Well documented...

... in English

Challenges with generality

+

+

Two Proof Formats

n LFSC
Alethe A logical framework (with side
A general proof format. o

conditions).

Looks like SMT-LIB

Used! (cvc5, veriT, Isabelle, Carcara)
Well documented...

... in English

Challenges with generality

+

+ High performance checker
Declarative

Hard to read

Side conditions from another world
Limited theories

+

+*
+

Eunoia: Inspired by Alethe and LFSC

Goal 1
Look like SMT-LIB and Alethe.

By SMT people for SMT people!

10

Eunoia: Inspired by Alethe and LFSC

Goal 1
Look like SMT-LIB and Alethe.

Goal 2
Provide a declarative language to specify proof rules for all SMT-LIB logics.

(that includes Bit Vectors).

By SMT people for SMT people!

10

Eunoia: Inspired by Alethe and LFSC

Goal 1
Look like SMT-LIB and Alethe.

Goal 2
Provide a declarative language to specify proof rules for all SMT-LIB logics.

(that includes Bit Vectors).

Goal 3
Allow fast checking of proofs against specified rules.

By SMT people for SMT people!

10

Eunoia: Inspired by Alethe and LFSC

Goal 1
Look like SMT-LIB and Alethe.

Goal 2
Provide a declarative language to specify proof rules for all SMT-LIB logics.

(that includes Bit Vectors).

Goal 3
Allow fast checking of proofs against specified rules.

Non Goal
Rules can be specified freely. It is not necessary to prove them correct.
Not Curry-Howard correspondence based.

By SMT people for SMT people!

10

Eunoia: Example 1

(assume al (and true (= a b))

(assume a2 (= b ¢))

(step s1 (= a b) :rule andE :premises (al) :args (2))
(step s2 (= a c) :rule trans :premises (s1 a2))

(step s3 (= (f a) (f c)) :rule cong :premises (s2) :args (f))

1

Eunoia: Example 1(Under The Hood)

I~ (cong f (trans
(andE 2 (assume (T A (a = b)))
(assume (a = b))))) : Proof (f a=f b)

12

Eunoia: Example 1(The Rules)

(declare-rule trans ((T Type) (a T) (b T) (c T))
:premises ((= a b) (= b c))
:conclusion (= a c)
)
(declare-rule cong ((T Type) (S Type) (a T) (b T) (f (-> S T)))
:premises ((= a b))
:args (f)
:conclusion (= (f a) (f c))

13

Eunoia: Example 1(The Rules)

(program select ((a Bool) (b Bool) (i Int))
:signature (Int Bool) Bool
(
((select 1 (and a b)) a)
((select 2 (and a b)) b)
)
)
(declare-rule andE ((a Bool) (b Bool) (i Int))
:premises ((and a b))
:args (1)
:conclusion (select i (and a b))

14

Eunoia: Example 1(The Rules, Abstractly)

I+ trans : Proof a = b — Proof b = ¢ — Proofa =c
—cong:(f: T—S)— Proof a=b — Proof (f a) = (f b)
I+~ andE: (i : Int) - Proof a A b — Proof (select i (a A b)

15

Eunoia: Example 2 (Recursion)

(program selectLast ((a Bool) (b Bool))
:signature (Bool) Bool
(
((selectLast (and a b)) (selectLast b))
((selectLast a) a)
)
)
(declare-rule andLast ((a Bool))
:premises (a)
:conclusion (selectlLast a)

16

Where do rules come from?

Cooperating Proof Calculus
- cvc5 specific
- for all standard theories
+ 100% proof coverage in safe mode
« faster than old LFSC system

17

Where do rules come from?

Cooperating Proof Calculus . .
) Alethe in Eunoia
* cvc5 specific
] « models the Alethe calculus
- for all standard theories . .
. « with Eunoia syntax
+ 100% proof coverage in safe mode .
« working proof of concept
« faster than old LFSC system

17

The cvc5 Ecosystem

cvech
| Rewriter |
| | 1sabellesHoL
SAT Solver Proof Nodes Elaborated Proofs -
I —)< Alethe Printer
v— %
. . Carcara

| Theory Solver ,)(API > < Eunoia Printer> I

I—) Ethos

used by

18

Checking Eunoia Proofs

Eunoia is
+ a dependently typed programming language,
- that mixes data and computation freely,

- that allows divergent computations.
« Computations can throw exceptions

 that can be cached!
+ i.e., we have observable effects.

19

Checking Eunoia Proofs

Eunoia is
+ a dependently typed programming language,
Oh, my...

- that mixes data and computation freely, how does that all work?

- that allows divergent computations.

- Computations can throw exceptions Let’s look at Ethos!
« that can be cached!
+ i.e., we have observable effects.

19

Ethos: a Proof Checker, Not a Type Checker

Upsides
Ethos checking model (roughly): * Correct!
1. Check only that (constants, programs, rules) * Fast.
signature is well-formed. + Easy to implement.
2. Iterate over proof steps. + Easy to extend.
- Observe that all terms have concrete type!
21 Instantiate variables in types. Downsides

2.2 Recurse into type constraints.

; - Bugs in rules can be missed.
2.3 Perform computations.

- Divergence, exception: proof reject. - Unexpected.

- Wasted work (e.g., function
composition).
20

Checking Eunoia Proofs

Eunoia is
« a dependently typed programming language,
- that mixes data and computation freely, Oh; fiiYee
how does that all work?

- that allows divergent computations.

 Computations can throw exceptions Let's lookatEthos!

« that can be cached!
+ i.e., we have observable effects.

21

Checking Eunoia Proofs

Eunoia is
+ a dependently typed programming language,
- that mixes data and computation freely,

- that allows divergent computations.
« Computations can throw exceptions

« that can be cached!
+ i.e., we have observable effects.

J. Garrett Morris solving a problem. 21

pEunoia : System Y + Core Eunoia

System Y: Decidable Dependent Type Theory with explicit evaluation evidence.
pEunoia is not a subset of Eunoia.

pEunoia checking model (abstractly):

1. Write your signature in pyEunoia (auto translation is future work).

2. Typecheck your signature.
3. Run modified Ethos on an Eunoia proof.

« Divergence, exceptions: reject proof
« Otherwise: output proof with evaluation evidence (uEunoia proof)

4. Typecheck your pEunoia proof.

22

zeros : M(n : Z). Vecintn

23

zeros : M(n : Z). Vecintn

moreZeroes: (n:Z)— (m:Z) — letp=addnm{1)inVecZp
moreZeroes n m = dletp =addnm{1)inzerosp

23

zeros : M(n : Z). Vecintn

moreZeroes: (n:Z)— (m:Z) — letp=addnm{1)inVecZp
moreZeroes n m = dletp =addnm{1)inzerosp

theZeros : Vec Z 12

theZeros = [moreZeros 9 3] (4)

23

The Project

« Goal: add enough to be “Eunoia”
« Deep Embedding in Agda!
« Substantial: > 11000 lines

What We Support

- Signatures

- Literals

« Overriding literal typing

+ Non-linear matching

* Builtins

« Exceptions

« Special variable scoping
- Declaration-wide scopes
« “Quote” Arrow

24

The Project
« Goal: add enough to be “Eunoia”
« Deep Embedding in Agda!
- Substantial: > 11000 lines Status
100% Language, Evaluation, Typing

What We Support ..
100% Unicity
- Signatures -
5 (lirersls 100% Decidability
« Overriding literal typing 100% Progress
. No.n-.llnear matching Srecanai
* Builtins
- Exceptions 10% Soundness Case Study
« Special variable scoping
- Declaration-wide scopes 2%

« “Quote” Arrow

The State of Eunoia

Ethos Proof Checker
Experimentally deployed at AWS.

System description in progress (1JCAR).
CPC Rules

Stable and well tested.

Research paper in progress (CAV).
AlethelnEunoia

Working prototype.

Alethe update paper in progress (IJCAR).

System Y and pEunoia
Finishing touches needed.

25

The State of Eunoia

Ethos Proof Checker
Experimentally deployed at AWS.

R Downsides
System description in progress (1JCAR).

« Does not give guarantees for the

CPC Rules
Stable and well tested. SLMEEES O TUIEE:

Research paper in progress (CAV). * l.e, it's trivial to define

false : Proof L.

AlethelnEunoia
Working prototype.

Alethe update paper in progress (IJCAR). + Does not simpify proof
reconstruction.

« Ethos is not verified.

System Y and pEunoia
Finishing touches needed.

25

The Future: Panproof

Elaborate solver specific rules into common standard rules on demand.

data ProofRule (@0 I : Signature) : Set where

Rule :
(name : String)
% (infer : (prems : List (Sequent I')) & Maybe (Sequent I)))

> (elaborate : (prems : List (Sequent I')) » Maybe (Step I' prems))
> (@0 proof : (prems : List (Sequent I))
% (infer prems) == (checkStep (elaborate prems)))

9 ProofRule I

Prototype:
https://github.com/hansjoergschurr/Panproof

https://github.com/hansjoergschurr/Panproof

Thank You!

Panproof: Rule Example

veriT Proof _——~ cvcS5 Proof Binary Resolution Proof

C1 -+ Chna Cq Chny1 cr Cl
— Ro . : L2 R, (p1,L1) .
f o 0 Co1 03 Ry

€1 " G Re Coz (1, L2)
Cf (P1, L1, pn, L) : C;H—l Re
Cf (P, Ln)
Cot 3
v M, Reorder B PRVE VA Reorder
Rp (1, L2)
M; VvV Mo

28

Eunoia Variables: Declaration-Scoped

(declare-parameterized-const ubv_to_int

((m Int :implicit)) “Quote” Arrow
(-> (BitVec m) Int))

(program fromBvAdd ((n Int) (bv (BitVec n))) . . .
:signature (Int (BitVec n)) Int ex:[n+m:Z}> BitVecn

(((fromInt n bv) (+ n (ubv_to_int bv))) ex (1+2) : BitVec 1
) :

« Every declaration has n variables.

« Vec Bool n to mark assigned, free, bound variables

« Vec Term n for typing, substitution.
« Kills De Bruijn indices &
- Matching with vectors that track free/bound variables ==
« Spine-local type inference to assign types in applications.
- Big problem: dlet leaks variables to outer context!

+ Solution: Program calls must transfer variables into the caller context.

29

Rule Sketches

TM:A r-A:7 TLAF.M:B Fr-cM:.#ZA T M —» [n] returnV
T M:A F-AM:MAB FTE=(ny:VeM
Tr—A: 7 r-A:97 rA-.B:9 FTEM:nletAB THN:C<A
M- 7A: T r-nNAB:7 M= [MIN:BIC]
r=EM:A FrN-V:A TH.M:.7A MN-cM:nletAB THN:C«A
return M : .ZA TFVeM: 7 M [M]N:B[C]

r’-cM: 7A T+.B: 7 T,A-cN:wkB T+ M: #7A T,A+.B: 7 T,A-.N:B
N~cnletMN:B M.dletMN:nletMB

30

	This is a part header!

