Reliable Reconstruction of Fine-Grained Proofs

in a Proof Assistant

Hans-Jörg Schurr Mathias Fleury Martin Desharnais
SMT 2021 (and CADE'28)

LIT AI Laboratory

Interactive Theorem Proving with Sledgehammer

Inside the smt tactic

Inside the smt tactic

Inside the smt tactic

Interactive Theorem Proving with Sledgehammer

- Traditional CDCL(T) solver
- Supports:
- Uninterpreted functions
- Linear arithmetic
- Quantifiers
- ...
- SMT-LIB input
- Lightweight
- BSD Licence
- Quantifier instantiation:
- Conflicting instances
- Trigger-based instantation
- Enumerative instantation
- Proofs
- Fine-grained
- Proofs for transformations below quantifiers
- Alethe output

Simplifications

Can the simplification rule be more fine grained?

Before single rule combining all simplifications, undocumented

Now one rule per transformation with a semantic
17 different rules

Before automatic proof tactics like auto, with known timeouts
Now directed anplications of the simnlifier
along simp only: plus_simps

Simplifications

Can the simplification rule be more fine grained?

Before single rule combining all simplifications, undocumented
Now one rule per transformation with a semantic 17 different rules

Before automatic proof tactics like auto, with known timeouts
Now directed applications of the simplifier along simp only: plus_simps

Simplifications

Can the simplification rule be more fine grained?

Before single rule combining all simplifications, undocumented
Now one rule per transformation with a semantic 17 differentrules

Before automatic proof tactics like auto, with known timeouts
Now directed applications of the simplifier along simp on1y: plus_simps

Implicit Normalizations

Clauses like tautologies are simplified, why?

Before $\neg \neg t$ implicitly simplified to t in the solver

Before clauses with complementary literals simplified to
E
Before repeated literals implicitly eliminated
After patch the proof with, e.g, a step $\neg \neg \neg t \vee t$ and a resolution
step

Before special case for every step!
Now no nollution in rule reconstruction
(if P then Q else R) implies $\neg P$

Implicit Normalizations

Clauses like tautologies are simplified, why?

Before $\neg \neg t$ implicitly simplified to t in the solver
Before clauses with complementary literals simplified to T
Before repeated literals implicitly eliminated
After patch the proof with, e.g, a step $\neg \neg \neg t \vee t$ and a resolution step

Before special case for every step!
Now no pollution in rule reconstruction (if P then Q else R) implies $\neg P \vee Q$

Implicit Normalizations

Clauses like tautologies are simplified, why?

Before $\neg \neg t$ implicitly simplified to t in the solver
Before clauses with complementary literals simplified to T
Before repeated literals implicitly eliminated
After patch the proof with, e.g, a step $\neg \neg \neg \uparrow \vee t$ and a resolution step

Before special case for every step!
Now no pollution in rule reconstruction

$$
\text { (if } P \text { then } Q \text { else } R \text {) implies } \neg P \vee Q
$$

Reconstructing Arithmetic

Isabelle fails on this LA tautology: $2 x<3 \leftrightarrow x \leq 1$ over \mathbb{Z}
Why? Strengthening!

Before no witness

Now witness in the proof, e.g., $1 / 2$
Now even typed witness

Before witness (Farkas's coefficients) derived again
Now reconstruction of the I Δ solver.
Now ... with same visibility 2 * if True then 1 else 0

Reconstructing Arithmetic

Isabelle fails on this LA tautology: $2 x<3 \leftrightarrow x \leq 1$ over \mathbb{Z}
Why? Strengthening!

Before no witness
Now witness in the proof, e.g., $1 / 2$
Now even typed witness

Before witness (Farkas's coefficients) derived again
Now reconstruction of the IA solver.
Now ... with same visibility 2 * if True then 1 else 0

Reconstructing Arithmetic

Isabelle fails on this LA tautology: $2 x<3 \leftrightarrow x \leq 1$ over \mathbb{Z}
Why? Strengthening!

Before no witness
Now witness in the proof, e.g., $1 / 2$
Now even typed witness

Before witness (Farkas's coefficients) derived again
Now reconstruction of the LA solver...
Now ... with same visibility $2 *$ if True then 1 else 0

Step Skipping

Can we do better by understanding proofs globally?

- veriT normalizes every name x to veriT_vr42 with a proof. But: $(\forall x . P x)=(\forall$ veriT_vr42. P veriT_vr42 $)$ for Isabelle
So: remove subproof.
- $\operatorname{detect} P \neq Q \vee \neg P \vee Q, \quad P=Q, \quad P \quad$ implies Q.

So: remove one step and specialize resolution step.
But: conclusion of step must be known.
Both important for quantifiers

Step Skipping

Can we do better by understanding proofs globally?

- veriT normalizes every name x to veriT_vr42 with a proof. But: $(\forall x . P x)=\left(\forall v e r i T _v r 42 . P\right.$ veriT_vr42) for Isabelle
So: remove subproof.
- $\operatorname{detect} P \neq \mathrm{Q} \vee \neg P \vee \mathrm{Q}, \quad P=\mathrm{Q}, \quad P \quad$ implies Q .

So: remove one step and specialize resolution step.
But: conclusion of step must be known.
Both important for quantifiers

Step Skipping

Can we do better by understanding proofs globally?

- veriT normalizes every name x to veriT_vr42 with a proof. But: $(\forall x . P x)=\left(\forall v e r i T _v r 42 . P\right.$ veriT_vr42) for Isabelle
So: remove subproof.
- $\operatorname{detect} P \neq \mathrm{Q} \vee \neg P \vee \mathrm{Q}, \quad P=\mathrm{Q}, \quad P \quad$ implies Q .

So: remove one step and specialize resolution step.
But: conclusion of step must be known.
Both important for quantifiers

Mirabelle

Automatic tool to test Sledgehammer:

- calls Sledgehammer on all possible goals
- can produce the SMT files corresponding to the goals

Three outcomes for Sledgehammer/Mirabelle:

1. the backend found a proof and preplay worked (3)
2. the backend found a proof but preplay failed
3. the backend did not find a proof our iob cannot be fully automated!

Strategy Selection

veriT is highly configurable! Can we do better than the default strategy?

We found four strategies:

- the overall best
- three complementary strategies

But: no scheduling in veriT smt, instead all tried during preplay.

CVC4: Preplay Success Rate

CVC4: Preplay Time (smt only)

CVC4: Preplay Time (smt only)

Alethe Proof Format

Key elements:

- natural-deduction style
- avoids repetition
- fine-grained quantifier reasoning
- follows SMT-LIB when possible

Key idea: stack with context

$$
\frac{x=y \triangleright P x=Q y}{\nabla(\forall x . P x)=(\forall y . P y)}
$$

Alethe Proof Format

```
(assume a0 (exists ((x A)) (f x)))
(anchor :step tl :args (:= x vr))
(step tl.tl (cl (= x vr)) :rule cong)
(step tl.t2 (c1 (= (f x) (f vr)))) :rule cong)
(step tl (cl (= (exists ((x A)) (f x)) (exists ((vr A)) (f vr)))) :rule bind)
(step t2 (c1 (not (= (exists ((vr A)) (f x)) (exists ((vr A)) (f vr))))
    (not (exists ((vr A)) (f x)))
    (exists ((vr A)) (f vr))) :rule equiv_posl)
(step t3 (c1 (exists ((vr A)) (f vr))) :premises (a0 tl t2) :rule resolution)
(define-fun X () A (choice ((vr A)) (f vr)))
(step t4 (cl (= (exists ((vr A)) (f vr)) (f X))) :rule sko_ex)
(step t5 (c1 (not (= (exists ((vr A)) (f vr)) (f X)))
    (not (exists ((vr A)) (f vr))) (f X)) :rule equiv_posl)
(step t6 (c1 (f X)) :premises (t3 t4 t5) :rule resolution)
```

Part of veriT. Ongoing work for inclusion in cvc5, formal specification, and standalone proof checker.

More details in our PxTP'21 talk

We can now reconstruct veriT proofs...
... as a user, just profit:

- part of Isabelle 2021
- improved Sledgehammer performance
- already 141 calls in the Archive of Formal Proofs
as a developper (futur work):
- wider support for smt
- better Isar proofs

We can now reconstruct veriT proofs...
... as a user, just profit:

- part of Isabelle 2021
- improved Sledg

asta la vista
@astahfrom
- already 141 call You may not like it, but this is the ideal Isabelle proof
by (smt (verit, ccfv_SIG) One_nat_def Suc_diff_1 Suc_ile_eq add.commute add.right_neutral enat_less_enat_plusi2 f(1) i0_less iless_Suc_eq ldropn_0 less_imp_diff_less llength_LCons llength_LNil llist.disc(2) inth_Suc_LCons inth_itl not_le not_le_imp_less not_less_iff_gr_or_eq not_less_zero one_enat_def plus_1_eq_Suc the_enat.simps zero_enat_def zero_less_Suc)
- wider Support f 11:20 AM • Jul 2, 2021 • Twitter Web App
- better Isar proofs

We can now reconstruct veriT proofs...
... as a user, just profit:

- part of Isabelle 2021
- improved Sledgehammer performance
- already 141 calls in the Archive of Formal Proofs
... as a developper (futur work):
- wider support for smt
- better Isar proofs

CVC4 Results

$\begin{aligned} & \text { HOL-Library } \\ & \text { (13562 goals) } \end{aligned}$	$\begin{gathered} \text { PDE } \\ (1715 \text { goals }) \end{gathered}$	$\begin{gathered} \text { RP } \\ (1658 \text { goals) } \end{gathered}$	$\begin{gathered} \text { Simplex } \\ \text { (1982 goals) } \end{gathered}$
SR OL ${ }_{v} \mathrm{OL}_{z} \mathrm{PF}$	SR OL ${ }_{v} \mathrm{OL}_{z} \mathrm{PF}$	SR OLl OLz PF	SR OLlv $\mathrm{OL}_{z} \mathrm{PF}$

Fact-filter prover: CVC4

| z-smt | 54.5 | | 2.7 | 1.5 | 33.1 | | 3.7 | 0.8 | 64.8 | | 1.3 | 0.8 | 51.6 | | 1.6 | 0.9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| v-smt+z-smt | 55.5 | 2.5 | 1.1 | 0.5 | 33.6 | 3.6 | 0.6 | 0.3 | 65.3 | 1.4 | 0.4 | 0.3 | 52.1 | 1.1 | 1.0 | 0.4 |

