Reliable Reconstruction of Fine-Grained Proofs in a Proof Assistant

Hans-Jörg Schurr Mathias Fleury Martin Desharnais SMT 2021 (and CADE'28)

COD

Research Institute Cyber Defence

- Traditional CDCL(T) solver
- Supports:
 - Uninterpreted functions
 - Linear arithmetic
 - Quantifiers
 - ...
- SMT-LIB input
- Lightweight
- BSD Licence

- Quantifier instantiation:
 - Conflicting instances
 - Trigger-based instantation
 - Enumerative instantation
- Proofs
 - Fine-grained
 - Proofs for transformations below quantifiers
 - Alethe output

Can the simplification rule be more fine grained?

Before single rule combining all simplifications, undocumented

Now one rule per transformation with a semantic

different rules

Before automatic proof tactics like auto, with known timeouts

Now directed applications of the simplifier along simp only: plus_simps

Can the simplification rule be more fine grained?

Before single rule combining all simplifications, <u>undocumented</u>

Now one rule per transformation with a <u>semantic</u>

17 different rules

Before automatic proof tactics like auto, with known timeouts

Now directed applications of the simplifier along simp only: plus_simps

Can the simplification rule be more fine grained?

Before single rule combining all simplifications, undocumented

Now one rule per transformation with a <u>semantic</u>

17 different rules

Before automatic proof tactics like auto, with known timeouts

Now directed applications of the simplifier along simp only: plus_simps

Clauses like tautologies are simplified, why?

Before $\neg \neg t$ implicitly simplified to t in the solver

Before $\,$ clauses with complementary literals simplified to op

Before repeated literals implicitly eliminated

After patch the proof with, e.g, a step $\neg \neg \neg t \lor t$ and a resolution step

Before special case for every step!

Now no pollution in rule reconstruction

(if P then Q else R) implies $\neg P \lor Q$

Clauses like tautologies are simplified, why?

Before $\neg \neg t$ implicitly simplified to t in the solver

Before clauses with complementary literals simplified to \top

Before repeated literals implicitly eliminated

After patch the proof with, e.g, a step $\neg \neg \neg t \lor t$ and a resolution step

Before special case for every step!

Now no pollution in rule reconstruction

(if P then Q else R) implies $\neg P \lor Q$

Clauses like tautologies are simplified, why?

Before $\neg \neg t$ implicitly simplified to t in the solver

Before clauses with complementary literals simplified to \top

Before repeated literals implicitly eliminated

After patch the proof with, e.g, a step $\neg \neg \neg t \lor t$ and a resolution step

Before special case for every step!

Now no pollution in rule reconstruction

(if P then Q else R) implies $\neg P \lor Q$

Reconstructing Arithmetic

Isabelle fails on this LA tautology: $2x < 3 \leftrightarrow x \le 1$ over \mathbb{Z} Why? Strengthening!

Before no witness

Now witness in the proof, e.g., 1/2

Now even typed witness

Before witness (Farkas's coefficients) derived again

Now reconstruction of the LA solver...

Now ... with same visibility 2 * if True then 1 else 0

Reconstructing Arithmetic

Isabelle fails on this LA tautology: $2x < 3 \leftrightarrow x \le 1$ over \mathbb{Z} Why? Strengthening!

Before no witness

Now witness in the proof, e.g., 1/2

Now even typed witness

Before witness (Farkas's coefficients) derived again

Now reconstruction of the LA solver...

Now ... with same visibility 2 * if True then 1 else 0

Reconstructing Arithmetic

Isabelle fails on this LA tautology: $2x < 3 \leftrightarrow x \le 1$ over \mathbb{Z} Why? Strengthening!

Before no witness

Now witness in the proof, e.g., 1/2

Now even typed witness

Before witness (Farkas's coefficients) derived again

Now reconstruction of the LA solver...

Now ... with same visibility 2 * if True then 1 else 0

Can we do better by understanding proofs globally?

veriT normalizes every name x to veriT_vr42 with a proof.
But: (\forall x. P x) = (\forall veriT_vr42. P veriT_vr42) for Isabelle
So: remove subproof.

De Brujn indices

detect P ≠ Q ∨ ¬P ∨ Q, P = Q, P implies Q.
 So: remove one step and specialize resolution step.
 But: conclusion of step must be known.

Both important for quantifiers

used for every normalization pattern

Skolemization: ≥ 8 to 3 steps

Can we do better by understanding proofs globally?

veriT normalizes every name x to veriT_vr42 with a proof.
But: (\forall x. P x) = (\forall veriT_vr42. P veriT_vr42) for Isabelle
So: remove subproof.

De Brujn indices

detect P ≠ Q ∨ ¬P ∨ Q, P = Q, P implies Q.
 So: remove one step and specialize resolution step.
 But: conclusion of step must be known.

Both important for quantifiers

Skolemization: ≥ 8 to 3 steps

used for every normalization pattern

Can we do better by understanding proofs globally?

- veriT normalizes every name x to veriT_vr42 with a proof.
 But: (\for x) = (\for veriT_vr42. P veriT_vr42) for Isabelle
 De Brujn indices
 So: remove subproof.
- detect $P \neq Q \lor \neg P \lor Q$, P = Q, P implies Q. So: remove one step and specialize resolution step. But: conclusion of step must be known.

Both important for quantifiers

Skolemization: ≥ 8 to 3 steps

Mirabelle

Automatic tool to test Sledgehammer:

- calls Sledgehammer on all possible goals
- can produce the SMT files corresponding to the goals

Three outcomes for Sledgehammer/Mirabelle:

- 1. the backend found a proof and preplay worked igodot
- 2. the backend found a proof but preplay failed 😭
- 3. the backend did not find a proof our job cannot be fully automated!

veriT is highly configurable! Can we do better than the default strategy?

We found four strategies:

- the overall best
- three complementary strategies

instantiation strategy varies

But: no scheduling in veriT smt, instead all tried during preplay.

CVC4: Preplay Success Rate

CVC4: Preplay Time (smt only)

CVC4: Preplay Time (smt only)

Key elements:

- natural-deduction style
- avoids repetition
- fine-grained quantifier reasoning
- follows SMT-LIB when possible

Key idea: stack with context

let-binding not expanded

skolemization via Hilbert choice

S-expressions, commands, and annotations

Barbosa et al. CADE'26 and JAR'20

$$\frac{x = y \triangleright Px = Qy}{\triangleright (\forall x. Px) = (\forall y. Py)}$$

Alethe Proof Format

```
(assume a0 (exists ((x A)) (f x)))
(anchor :step tl :args (:= x vr))
(step t1.t1 (c1 (= x vr))
                                                           :rule cong)
(step t1.t2 (c1 (= (f x) (f vr))))
                                                           :rule cong)
(step t1 (c1 (= (exists ((x A)) (f x)) (exists ((vr A)) (f vr)))) :rule bind)
(step t2 (cl (not (= (exists ((vr A)) (f x)) (exists ((vr A)) (f vr))))
            (not (exists ((vr A)) (f x)))
            (exists ((vr A)) (f vr)))
                                                           :rule equiv posl)
(step t3 (c1 (exists ((vr A)) (f vr))) :premises (a0 t1 t2) :rule resolution)
(define-fun X () A (choice ((vr A)) (f vr)))
(step t4 (c1 (= (exists ((vr A)) (f vr)) (f X)))
                                                           :rule sko ex)
(step t5 (c1 (not (= (exists ((vr A)) (f vr)) (f X)))
            (not (exists ((vr A)) (f vr))) (f X)) :rule equiv posl)
                                      :premises (t3 t4 t5) :rule resolution)
(step t6 (c1 (f X))
```

Part of veriT. Ongoing work for inclusion in cvc5, formal specification, and standalone proof checker.

More details in our PxTP'21 talk

We can now reconstruct veriT proofs...

... as a user, just profit:

- part of Isabelle 2021
- improved Sledgehammer performance
- already 141 calls in the Archive of Formal Proofs

... as a developper (futur work):

- wider support for smt
- better lsar proofs

718cb448a456

We can now reconstruct veriT proofs...

... as a user, just profit:

- part of Isabelle 2021
- improved Sledg
- already 141 calls

... as a developper (

- wider support f
- @astahfrom
 @astahfrom
 You may not like it, but this is the ideal Isabelle proof
 by (smt (verit, ccfv_516) One_nat_def Suc_diff_1 Suc_ite_eq add.commute add.right_neutral
 enat_less_enat_plus12 f(1) io_less lites_Suc_eq lafon_0 less_imp_diff_less tlength_LCons
 tlength_LNit lites.ids(21) inth_Suc_LCons inth_1th int_less
 inot_less_iff_gr_or_eq not_less_zero one_enat_def plus_leq_Suc the_enat.simps zero_enat_def
 zero_less_Suc)

11:20 AM · Jul 2, 2021 · Twitter Web App

asta la vista

• better Isar proofs

718cb448a456

We can now reconstruct veriT proofs...

... as a user, just profit:

- part of Isabelle 2021
- improved Sledgehammer performance
- already 141 calls in the Archive of Formal Proofs

... as a developper (futur work):

- wider support for smt
- better Isar proofs

718cb448a456

HOL-Library	PDE	RP	Simplex				
(13 562 goals)	(1 715 goals)	(1 658 goals)	(1 982 goals)				
SR OL _v OL _z PF							

Fact-filter prover: CVC4

z-smt	54.5		2.7	1.5	33.1		3.7	0.8	64.8		1.3	0.8	51.6		1.6	0.9
v-smt+z-smt	55.5	2.5	1.1	0.5	33.6	3.6	0.6	0.3	65.3	1.4	0.4	0.3	52.1	1.1	1.0	0.4