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Interactive Theorem Proving with Sledgehammer

Encode Problem

veriTECVC4 Z3 …
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Extract Unsatisfiability Core
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Inside the smt tactic

Encode to First-order Logic

¬Goal

Lemmas

Call SMT Solver

Z3

Parse Proof

Convert to
Isabelle/HOL Terms

Reconstruct

⊥
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Interactive Theorem Proving with Sledgehammer

Encode Problem

veriTECVC4 Z3 …

Backend

Extract Unsatisfiability Core

metisautosimp smt with veriT/Z3 …

Preplay
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veriT

• Traditional CDCL(T) solver

• Supports:

• Uninterpreted functions
• Linear arithmetic
• Quantifiers
• …

• SMT-LIB input

• Lightweight

• BSD Licence

• Quantifier instantiation:

• Conflicting instances
• Trigger-based instantation
• Enumerative instantation

• Proofs

• Fine-grained
• Proofs for transformations below
quantifiers

• Alethe output
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Simplifications

Can the simplification rule be more fine grained?

Before single rule combining all simplifications, undocumented

Now one rule per transformation with a semantic 17 different rules

Before automatic proof tactics like auto, with known timeouts

Now directed applications of the simplifier

along simp only: plus_simps
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Implicit Normalizations

Clauses like tautologies are simplified, why?

Before ¬¬t implicitly simplified to t in the solver
Before clauses with complementary literals simplified to>
Before repeated literals implicitly eliminated

After patch the proof with, e.g, a step ¬¬¬t ∨ t and a resolution

step

Before special case for every step!

Now no pollution in rule reconstruction

(if P then Q else R) implies ¬P ∨Q

α

A

βλ →

10/22



Implicit Normalizations

Clauses like tautologies are simplified, why?

Before ¬¬t implicitly simplified to t in the solver
Before clauses with complementary literals simplified to>
Before repeated literals implicitly eliminated

After patch the proof with, e.g, a step ¬¬¬t ∨ t and a resolution

step

Before special case for every step!

Now no pollution in rule reconstruction

(if P then Q else R) implies ¬P ∨Q

α

A

βλ →

10/22



Implicit Normalizations

Clauses like tautologies are simplified, why?

Before ¬¬t implicitly simplified to t in the solver
Before clauses with complementary literals simplified to>
Before repeated literals implicitly eliminated

After patch the proof with, e.g, a step ¬¬¬t ∨ t and a resolution

step

Before special case for every step!

Now no pollution in rule reconstruction

(if P then Q else R) implies ¬P ∨Q

α

A

βλ →

10/22



Reconstructing Arithmetic

Isabelle fails on this LA tautology: 2x < 3 ↔ x ≤ 1 over Z

Why? Strengthening!

Before no witness

Now witness in the proof, e.g., 1/2

Now even typed witness

Before witness (Farkas’s coefficients) derived again

Now reconstruction of the LA solver...

Now ... with same visibility 2 ∗ if True then 1 else 0
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Step Skipping

Can we do better by understanding proofs globally?

• veriT normalizes every name x to veriT_vr42 with a proof.

But: (∀x. P x) = (∀veriT_vr42. P veriT_vr42) for Isabelle De Brujn indices

So: remove subproof.

• detect P 6= Q ∨ ¬P ∨Q, P = Q, P impliesQ. used for every normalization pattern

So: remove one step and specialize resolution step.

But: conclusion of step must be known.

Both important for quantifiers Skolemization: ≥ 8 to 3 steps
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Mirabelle

Automatic tool to test Sledgehammer:

• calls Sledgehammer on all possible goals

• can produce the SMT files corresponding to the goals

Three outcomes for Sledgehammer/Mirabelle:

1. the backend found a proof and preplay worked

2. the backend found a proof but preplay failed

3. the backend did not find a proof our job cannot be fully automated!

14/22



Strategy Selection

veriT is highly configurable! Can we do better than the default strategy?

We found four strategies:

• the overall best

• three complementary strategies instantiation strategy varies

But: no scheduling in veriT smt, instead all tried during preplay.

15/22



CVC4: Preplay Success Rate
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CVC4: Preplay Time (smt only)
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Alethe Proof Format

Key elements:

• natural-deduction style

• avoids repetition let-binding not expanded

• fine-grained quantifier reasoning skolemization via Hilbert choice

• follows SMT-LIB when possible S-expressions, commands, and annotations

Key idea: stack with context Barbosa et al. CADE’26 and JAR’20

x = y I P x = Qy
I (∀x. P x) = (∀y. P y)
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Alethe Proof Format

(assume a0 (exists ((x A)) (f x)))
(anchor :step t1 :args (:= x vr))
(step t1.t1 (cl (= x vr)) :rule cong)
(step t1.t2 (cl (= (f x) (f vr))) :rule cong)
(step t1 (cl (= (exists ((x A)) (f x)) (exists ((vr A)) (f vr)))) :rule bind)
(step t2 (cl (not (= (exists ((vr A)) (f x)) (exists ((vr A)) (f vr))))

(not (exists ((vr A)) (f x)))
(exists ((vr A)) (f vr))) :rule equiv_pos1)

(step t3 (cl (exists ((vr A)) (f vr))) :premises (a0 t1 t2) :rule resolution)
(define-fun X () A (choice ((vr A)) (f vr)))
(step t4 (cl (= (exists ((vr A)) (f vr)) (f X))) :rule sko_ex)
(step t5 (cl (not (= (exists ((vr A)) (f vr)) (f X)))

(not (exists ((vr A)) (f vr))) (f X)) :rule equiv_pos1)
(step t6 (cl (f X)) :premises (t3 t4 t5) :rule resolution)

Part of veriT. Ongoing work for inclusion in cvc5,
formal specification, and standalone proof checker.

More details in our PxTP’21 talk 20/22
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We can now reconstruct veriT proofs...

... as a user, just profit:

• part of Isabelle 2021

• improved Sledgehammer performance

• already 141 calls in the Archive of Formal Proofs 718cb448a456

... as a developper (futur work):

• wider support for smt

• better Isar proofs
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CVC4 Results

HOL-Library PDE RP Simplex

(13 562 goals) (1 715 goals) (1 658 goals) (1 982 goals)

SR OLv OLz PF SR OLv OLz PF SR OLv OLz PF SR OLv OLz PF

Fact-filter prover: CVC4

z-smt 54.5 2.7 1.5 33.1 3.7 0.8 64.8 1.3 0.8 51.6 1.6 0.9

v-smt+z-smt 55.5 2.5 1.1 0.5 33.6 3.6 0.6 0.3 65.3 1.4 0.4 0.3 52.1 1.1 1.0 0.4
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